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Abstract

Compared to other ecosystems, estuarine ecosystems have distinct carbon flux dynamics

– the lateral carbon flux incurred by tidal activities, and methane generation under the

anaerobic conditions of wetland soils. The conventional estimation of gross primary

production (GPP) based on the light use efficiency (LUE) model used for non-wetland

terrestrial ecosystems, therefore, cannot be applied directly to estuarine wetland ecosys-

tems. In this paper, we estimated the 2005’s annual carbon budget of an estuarine

wetland on Chongming Island, Shanghai, and partitioned the losses of carbon due to

lateral tidal dynamics and anaerobic methane production using an innovative technique.

The average GPP calculated from eddy covariance between March and November was

261.79 lmol m�2 day�1, whereas that from the LUE model was 58.84 lmol m�2 day�1. The

correlation coefficient between GPP simulated from the LUE model and that calculated

from flux tower data was low in the growing season (R2 5 0.55). We hypothesized that

tidal activities and uncounted methane release were responsible for the difference,

which can be predicted from measurements of remote sensing products such as land

surface water index (LSWI), evapotranspiration (ET), and tide height (TH). We developed

an integrated GPP model by combining the LUE model and an autoregression model

to estimate carbon budget. The average GPP from the modified model increased to

263.38 lmol m�2 day�1, and R2 for the correlation between the simulated and calculated

data increased to 0.88, demonstrating the potential of our technique for GPP estimation

and quantification of seasonal variation in estuarine ecosystems. The approach devel-

oped in this study has great potential for correcting unavoidable errors when estimating

carbon budget of coastal wetlands. Furthermore, global warming is expected to accelerate

sea level rise, which may enhance the effect of tidal activities and increase the difficulty

in estimating coastal carbon budgets using conventional methods.
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Introduction

A recent report by IPCC (http://ipcc-wg1.ucar.edu/

wg1/wg1-report.html) state that coastal wetlands are

highly sensitive to climate change, and one of the

greatest challenges in understanding the functioning

of the estuarine ecosystems is how to accurately esti-

mate the carbon budget. Accurate estimates of carbon

dioxide and water vapor exchange between ecosystems

and atmosphere are extremely valuable both for global

climate change studies and for management of water

and ecosystems (Houborg & Soegaard, 2004). The eddy

covariance (EC) technique provides direct measure-

ments of net exchange of CO2, water, and energy

between ecosystems and the atmosphere, allowing us

to examine changes and mechanistic regulations at

multiple temporal and spatial scales (Baldocchi et al.,

2001; Chen & Chen, 2004; Leuning et al., 2005). How-

ever, scaling up from the ecosystem level (i.e. based on

EC towers) to broader spatial scales (i.e. landscape and

region) remains challenging because of (1) interactions
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among ecosystems (Chen et al., 2006) and (2) spatial

complexity in landform, soil, and microclimate that

prevents use of the EC method (Paw U et al., 2000;

Scanlon & Albertson, 2003; Chen & Chen, 2004). Remote

sensing technology, meanwhile, can be an effective tool

for regional studies because it provides consistent and

systematic observations of land surface properties. Re-

cent success in modeling gross primary production

(GPP) (Running et al., 1999) and evapotranspiration

(ET) (Boegh & Soegaard, 2004; Houborg & Soegaard,

2004; Nagler et al., 2005a, b) indicates that remote sen-

sing technology may have potential for studying carbon

and water fluxes. Among the numerous challenges

inherent in applying this approach, accuracy assess-

ment and necessary validation with ground measure-

ments are critical – suggesting that an approach that

combines EC measurements with remotely sensed data

could provide opportunities for regional studies of

ecosystem processes (Reich et al., 1999; Turner et al.,

2003a; Nagler et al., 2005b; Heinsch et al., 2006).

A limited number of studies integrating flux tower

measurements and remote sensing products have been

conducted over the recent years, with emphasis on

validation and scaling-up in forests, agricultural grass-

lands, and arctic tundra landscapes (Turner et al., 2005,

2006; Xiao et al., 2005; Heinsch et al., 2006). Very few

studies, however, have been conducted in wetland-

dominated landscapes. We have not found any relevant

published studies on estuarine wetlands, regardless of

their importance in balancing the global carbon budget

(Martinelli et al., 1991) and conserving biological diver-

sity (i.e. species hot spots). Our study is among the first

to estimate carbon and water fluxes of estuarine wet-

lands using EC measurements and remote sensing

products.

Physical models of estuarine carbon balance

Estuarine wetlands are characterized by complex inter-

actions between vegetation type, strong and frequent

surface water movements (e.g. tides), and pore water

movement (Hughes et al., 1998). Many factors (e.g.

topography, the vegetation heterogeneity, the temporal

distribution of rainfall, seasonal variations of ET, and

tidal activity) can play critical roles in influencing

the hydrology of wetlands (Hughes et al., 1998) and,

consequently, other ecosystem properties such as car-

bon fluxes. In addition to the vertical carbon exchange

between ecosystem and atmosphere, lateral carbon ex-

change between the wetland and offshore water

through tidal activity and CH4 release from anaerobic

soil also need to be accounted for when net ecosystem

exchange (NEE) of carbon, water, and energy is quanti-

fied (Teal, 1962; Odum, 1968, 2000; Drake et al., 1996).

For example, Winter et al. (1996) used concentrations of

dissolved inorganic carbon, dissolved organic carbon,

and particulate organic carbon to quantify the total

carbon exported from the estuary to the ocean and

found that 4755 tons yr�1 were carried to the ocean.

Bange (2006) studied the distributions of N2O and

CH4 in European coastal areas and reported that aver-

age CH4 emissions were 0.21 and 0.35 Tg C yr�1 for

European shelves and estuaries.

Conceptually, the gross ecosystem exchange (GEE)

of carbon in estuarine wetland ecosystems can be

expressed as

GEE ¼ GPPþFlateralþFCH4
þFother; ð1Þ

where Flateral is the lateral exchange of C between the

wetland and offshore water through diffusion and tidal

movement, FCH4 is the amount of CH4 released into the

air, and Fother is other uncounted C exchange. In prac-

tice, GEE may be calculated from NEE measurements

obtained from the EC tower, while GPP may be esti-

mated from remote sensing products such as MODIS

(Moderate Resolution Imaging Spectrometer). The lat-

eral flux, methane flux, and other flux terms in Eqn (1)

cannot be modeled with high confidence using remote

sensing products. Heinsch et al. (2006) reported that

GEE estimates from EC towers matched GPP estimates

from MODIS very well, yet no similar efforts have been

made for wetland systems.

MODIS-based GPP/NPP estimations

GPP is conventionally estimated based on light use

efficiency (LUE) through remote sensing and modeling

by deriving important vegetation measurements such

as vegetation indices, the leaf area index (LAI), and LUE

(Waring et al., 1995; Turner et al., 2003a, b; Heinsch et al.,

2006; Xiao, 2006). In this study, we used the MODIS

products to predict landscape-level GPP. The sensor on

board the NASA Terra satellite has 36 spectral bands.

Seven spectral bands, blue (459–479 nm), green (545–

565 nm), red (620–670 nm), near infrared (841–875 nm,

1230–1250 nm), and shortwave infrared (1628–1652 nm,

2105–2155 nm) are primarily designed for the study of

vegetation and land surface. Since the launch of MODIS

in March 2000, it has been used widely in estimation

and evaluation of GPP and NPP. For example, Gebre-

michael & Barros (2006) evaluated MODIS GPP in the

tropical monsoon region in Marsyandi and Sonora and

found a positive bias for the mixed forest biome in the

Marsyandi basin and a negative bias for open shrub

lands in the Sonora basin. Xiao et al. (2004a, b) used

MODIS data to partition chlorophyll and nonphoto-

synthetically active vegetation (NPV) within a canopy

and to develop a highly accurate (R2 5 0.89–0.94) vege-
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tation photosynthesis model (VPM) to estimate GPP

based on the LUE model (Duan et al., 2005; Xiao et al.,

2005; Li et al., 2006). Their work successfully demon-

strated the potential of VPM for GPP estimation in

forest and grassland ecosystems.

Although satellite-based GPP estimations have been

tested widely for acceptable accuracy, we are cautious

about replicating the process in estuarine or tide-influ-

enced coastal wetlands because no model has consid-

ered lateral carbon exchange between sea and land, and

few have included CH4 flux, yet these are important

processes in coastal wetlands. Our study objectives

were threefold: (1) to examine biophysical performance

of vegetation in relation to seasonal dynamics of CO2

flux in an estuarine wetland by coupling MODIS

signature and flux measurements of C and water, (2)

to evaluate the feasibility and dependability of the

MODIS-based model for estimating GPP in estuarine

wetlands, and (3) to develop an integrated model

combining the MODIS-based model and empirical

models developed to account for lateral carbon ex-

change and CH4 release.

Materials and methods

Study sites

Our study area was located on the east shore of

Chongming Island, known as Dongtan, Shanghai – the

largest wetland (ca. 230 km2) in the Yangtze River

estuary (Fig. 1). Annual precipitation of 1000.4 mm

and a mean temperature of 15.3 1C characterize the

climate. Tidal movement at Dongtan is regular and

semidiurnal, with maximum and average tide heights

(TH) of 4.62–5.95 m and 1.96–3.08 m, respectively (Chen

& Chen, 2004). Three eddy flux towers were installed in

August 2004 in different vegetation types to provide

continuous records of NEE of carbon and water for

understanding the C flux and budget of the estuarine

wetlands in the Yangtze Delta and for validation of

remote sensing models. The towers were installed

on higher tideland near the dike (D: 31131.0000N,

121157.6430E), on lower tideland near the sea (S:

31131.0130N, 121158.2970E), and on mid-level tideland

(M: 31135.0790N, 121154.2070E) (Fig. 1). The three sites

had contrasting plant species, biomass, and microcli-

mate (Table 1). We ensured a minimum of 100 sensor

heights (i.e. 500 m, as 3-D sonic anemometers were

installed at about 5 m above the vegetation) of fetch in

all directions around each flux tower. The flux data

were recorded on data loggers at 10 Hz, and 30 min

averages were calculated during the growing season for

later analyses. Data from March to November of 2005

were included in this study.

Eddy covariance data analysis

Daily GPP values during the study period were calcu-

lated from half-hourly fluxes of NEE and night-time

ecosystem respiration at each site (Fig. 2). Major data

Fig. 1 Locations of study sites in estuarine wetlands in eastern Chongming Island (i.e. Dongtan), Shanghai, China. Three eddy

covariance flux towers were installed in 2004 at a low intertidal area near the sea (S), a relatively higher-elevation area near the dike (D),

and a mid-level Site (M) between S and D.
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quality control included spike removal, two-axis rota-

tion, and WPL correction (Leuning & Moncrieff, 1990).

Several criteria were adopted to identify invalid data for

removal, including (1) outliers that could not be ex-

plained by any known physical mechanisms, (2) data

recorded during rainfall events, and (3) night-time NEE

(photosynthetically active radiation (PAR) o5 mmol

m�2 s�1) as u*o0.10 m s�1. Data coverage for the grow-

ing season was 78.0%, 70.0%, and 82.6% for the D, M,

and S sites, respectively.

Estimation of GPP. Diel ecosystem respiration was esti-

mated based on an exponential relationship between

dark respiration (R) and temperature (T) (Sims et al.,

2005):

R ¼ Rn � e½kðTa�TnÞ�; ð2Þ

where Rn is the night-time respiration rate, Tn is the

mean night-time air temperature corresponding to the

data points used to calculate R, and k is the coefficient

relating respiration to air temperature ( 1C) (Fig. 2). GPP

is calculated as

GPP ¼ R�NEE: ð3Þ

The 8-day average GPP and NEE were calculated

from the 30 min GPP and NEE to correspond with

the temporal interval of MODIS product MOD09A1

(see MODIS data and vegetation indices) for the study

period (Fig. 3a–c).

Table 1 Primary biophysical characteristics of the three study

sites: D – inland near the dike, S – a Scirpus-dominated

submerging site near the sea, and M – a mid-level site between

S and D (see Fig. 1)

Site D M S

Dominant species and coverage

SA 0.715 0.546 0.484

PA 0.254 0.378 0.147

SM 0 0 0.068

Aboveground

biomass (g m�2)

1170.0 � 103.1 765.6 � 82.0 400.7 � 86.8

Relative

elevation (cm)

12 4 0

Distance to the

sea (m)

1400 300 0

Soil total C (%) 2.10 1.70 1.50

Soil total N (%) 0.12 0.08 0.06

LAI 4.70 3.84 1.59

Abbreviations for species names: SA, Spartina alterniflora; PA,

Phragmites australis; SM, Scirpus mariqueter.
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Fig. 2 Changes in daytime net ecosystem exchange (NEE) of CO2 with photosynthetically active radiation (PAR) (a–c) and nocturnal

ecosystem respiration (R) with air temperature (d–f) in the growing season of 2005 (DOY64–DOY320) at the three study sites in the

coastal Dongtan wetlands, Shanghai, China.
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Estimation of evapotranspiration. ET was estimated using

the methods proposed by Dahm et al. (2002). Speci-

fically, meteorological measurements, including mixing

ratio, air density, specific heat of air at constant

pressure, and latent heat of vaporization of water

from the mean water vapor pressure, air temperature,

and barometric pressure were used to calculate latent

heat fluxes (W m�2) so that 30 min ET could be

determined by dividing the latent heat of vaporization

(4.4 kJ mol�1). The 8-day average ET was calculated

from the 30 min ET corresponding to the same

temporal interval of MOD09A1.

MODIS data and vegetation indices

The 8-day composite MODIS product MOD09A1 (500 m

spatial resolution) was provided by the University of

New Hampshire, which allows the user to retrieve

1 pixel datasets based on geographic location for a

specified time span (http://remotesensing.unh.edu/).

The latitude and longitude of flux towers were set as

centroids of required MODIS pixels. As the 500 m

spatial resolution matched the footprint of our flux

towers well, we only considered 1 pixel for each site.

Data were downloaded from the website, and three

indices were calculated for use in models estimating

GPP: the normalized difference vegetation index

(NDVI), the enhanced vegetation index (EVI), and the

land surface water index (LSWI).

To assess the empirical utility of vegetation indices

in predicting GPP, we performed correlation analy-

sis between the vegetation indices (NDVI and EVI)

and GPP and found that EVI was the best predictor

for GPP. LSWI was also included in this study to

explore its potential utility for quantifying lateral trans-

portation of carbon related to tidal activities and for

modeling CH4 production. Because we did not have

direct measurements of these two fluxes, LSWI was

used to quantify the sum of the two terms as the

difference between the observed GPP from the EC

tower (GPPEC) and predicted GPP from MODIS

(GPPMODIS).
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Satellite-based light use efficiency estimation

The LUE model. Xiao et al. (2004a) developed a VPM

for estimating GPP over the photosynthetically active

period of vegetation:

GPP ¼ e g � FPARchI � PAR; ð4Þ

where FPARchI is the fraction of PAR absorbed by

leaf chlorophyll in the canopy and eg is LUE

(mmol CO2 mmol�1), which is affected by temperature,

water, and leaf phenology:

eg ¼ e0 � Tscalar �Wscalar � Pscalar; ð5Þ

where e0 is the apparent quantum yield or maximum

LUE, and Tscalar, Wscalar, and Pscalar are the scalars for the

effects of temperature, water, and leaf phenology on

LUE of vegetation, respectively.

Estimations of LUE. e0 is largely determined by the

choice of either a linear or nonlinear relationship

between GPP and absorbed PAR (APAR) over a year

(Xiao, 2006). In this study, we first used the Michaelis–

Menten (Table 2) function to estimate NEE (Davidson

et al., 2006):

NEE ¼ a�APAR�GPPmax

a�APARþGPPmax
�R; ð6Þ

where R is the ecosystem respiration, and a is the

apparent quantum yield or maximum LUE. To

estimate eg, the parameters for temperature, water,

and phenology scalars should first be determined

according to Xiao et al. (2004a).

Tscalar ¼
ðT � TminÞðT � TmaxÞ

½ðT � TminÞðT � TmaxÞ� � ðT � ToptÞ2
; ð7Þ

where Tmin, Topt, and Tmax are the temperatures and

were set to 0, 20, and 35 1C, respectively. In estuar-

ine wetlands, water stress (low water availability) is

unlikely to occur, so that Wscalar was set to 1.0. Pscalar is

dependent on the life expectancy of leaves that varies

with phenology. For our system, the wetland canopy

abounds with foliage in the growing season, and Pscalar

was set to 1.0.

The integrated model for GPP estimation

The LUE model focuses on C uptake through photo-

synthesis, while satellite-based GPP estimation depends

more on vegetation characteristics (e.g. LAI). GPPMODIS

covers neither lateral carbon loss nor CH4 release (non-

CO2 form). We expected to find some differences

between GPPEC and GPPMODIS or DGPP (i.e. the mag-

nitude of the lateral carbon flux plus non-CO2 carbon

emissions).

LSWI, ET, TH, and air temperature (T) were selected

to evaluate DGPP. Because LSWI, ET, and TH are

functions of T, T was arbitrarily excluded in the further

analysis to reduce bias related to high correlations

among the explanatory variables. To reduce the covar-

iance among LSWI, ET, and TH for predicting DGPP, we

performed principal component analysis (PCA). Addi-

tionally, autoregression (AR) analyses between DGPP

and the three factors (LSWI, ET, and TH) were

conducted by using first-order autocorrelated errors to

discount the autocorrelations. The following autore-

gression model was considered with a time-varying

autoregressive parameter:

DGPPt ¼ mþ ðrþ rt�1ÞDGPPt�1þet; ð8Þ

where et � NID (0, se
2), and rt is a censored

latent variable according to Franses et al. (2004), defined

as

r ¼ xtbþ mt if xtbþmt � 0
0 if xtbþ mt � 0

�
; ð9Þ

where mt � NID (0, sm
2) is independent of et, xt is a

(K� 1) vector of explanatory variables (TH, ET, and

LSWI) including a constant, and b is an unknown

(K� 1) parameter vector.

The final estimation of GPP integrated from the

MODIS-derived model and autoregression model is GPP0:

GPP0 ¼ GPPMODIS þGPPREG: ð10Þ

Table 2 Empirical coefficients of linear regression analyses

estimated based on the Michaelis–Menten model [Eqn (9)] for

the three study sites in Dongtan coastal wetlands, Shanghai,

China

Site N a GPPmax R2 F-test

D 720 0.0239 44.2402 0.641 Po0.05

M 720 0.0201 39.027 0.605 Po0.05

S 1200 0.017 36.6786 0.544 Po0.05

Table 3 Comparisons between the observed gross primary

production of eddy covariance towers (GPPEC) and model

based on MODIS products (GPPMODIS) in the three coastal

wetland study sites at Dongtan, Shanghai, China, between

DOY36 and DOY321 in 2005

Site GPPEC GPPMODIS (RE)

D 295.23 137.48 (53.43%)

M 276.76 102.68 (62.90%)

S 213.36 74.62 (65.03%)

The relative error (RE) was calculated as RE 5 [(GPPEC�
GPPMODIS)/GPPEC]� 100%.
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Results

Seasonal changes in NEE and GPP

Both NEE and GPP at three sites exhibited clear seaso-

nal changes corresponding to the changes in physical

environment (i.e. temperature, light) and vegetation

(Fig. 3), with an initial value near zero between

DOY65 and DOY113 (March 4–April 22), when air

temperature was below 7 1C (i.e. pregrowing season)

regardless of PAR levels (Fig. 3d–f). Vegetation indices

also indicated beginning of the growing season during

this period. However, we detected a measurable

amount of NEE during the same period at Site S where

tidal activities were most pronounced (Fig. 3f). As air

temperature increased to 10 1C after DOY113, vegeta-

tion increased linearly, peaking between DOY170 and

DOY260, then decreased until DOY320 (November 8) as

temperature and PAR both declined. The Phragmites-

dominated wetland near the dike (Site D) had the

highest peak NEE (�562.98 mmol m�2 day�1) and GPP

(669.49mmol m�2 day�1) and exhibited the most ob-

vious seasonal pattern. Average values of NEE (GPP)

were �202.07 (295.24), �183.87 (276.76), and �170.20

(213.36)mmol m�2 day�1 for sites D, M, and S, respec-

tively. These figures were consistent with aboveground

biomass measured through harvesting the vegetation at

peak vegetation growth (Table 1).

Changes in NDVI, EVI, and LSWI with GPP

The vegetation indices derived from MODIS datasets

(i.e. NDVI, EVI, and LSWI) captured the dynamics of

the vegetation well in 2005 (Fig. 3g and h). All three

indices were higher at Sites D and M than at Site S, with

an abrupt increase after DOY113 and peaks occurring

between DOY200 and DOY260. Biweekly fluctuations in

NDVI, EVI, and LSWI occurred at the same pace with

tidal changes and were more pronounced at Sites S and

M (both were closer to the ocean) than at Site D. The

mean NDVI (EVI) values for sites D, M, and S were

0.498 (0.293), 0.370 (0.212), and 0.351 (0.182), respec-

tively, while the mean LSWI values were 0.165, 0.197,

and 0.190, respectively. The seasonal dynamics of EVI

differed from NDVI in magnitude during the middle

of the growing season. The maximum NDVI values

ranged between 0.70 and 0.80 and were much higher

than the maximum EVI (0.43–0.55). NDVI reached and

maintained its maximum level at Site D after DOY193,

but not at other sites. Interestingly, none of the indices

reached their pregrowing season levels from DOY65,

suggesting a continuous decrease over the winter

months. The correlations between the vegetation in-

dices and GPP were significantly different among the

three sites (Fig. 4), with strong correlations found at

both sites D and S, but poor correlations at Site M. EVI

displayed a stronger linear relationship with GPP than

did NDVI (Fig. 4).

Predicting GPP from the LUE model

The LUE model was run at an 8-day time scale using

site-specific temperature, PAR, and vegetation indices

for the study period. Predicted GPP (GPPMODIS) did

not match the observed GPP (GPPEC) well (Fig. 5).

GPPMODIS was lower than GPPEC, except for two 8-

day periods at Site M early in the growing season. Daily

average GPPMODIS from March to November accounted

for 53.4% to 65.0% of GPPEC, with the discrepancy

increasing from Site D to Site S (Table 3). The difference

(i.e. GPP) between GPPEC and GPPMODIS suggested that

significant lateral movement of carbon and CH4 emis-

sion might have occurred.

Factors regulating GPP

The correlation analysis between DGPP and LSWI, ET,

and TH suggested strong influences of tides and vege-

tation (Table 4) at all three sites. The two inland sites (D

and M) showed stronger correlations between DGPP

and TH (R2 5 0.86 and 0.90, respectively) than did Site S

(R2 5 0.74), located at the submerging zone and fre-

quently affected by tides. LSWI and ET showed similar

correlations with DGPP for the three sites.

The PCA indicated that one principal component,

which had an eigenvalue 41, explained 83.31% of

the variance, and was negatively correlated with TH

(�0.938), LSWI (�0.879), and ET (�0.921) (Table 5).

Further analysis based on autoregression procedures

with first-order autocorrelated errors showed that the

standard error of the estimate was 58.691 when all three

variables (TH, LSWI, and ET) were considered, with

LSWI behaving as a non-significant variable (P 5 0.106).

Consequently, we developed a new autoregression

model with TH and ET as independent variables to

predict DGPP (Table 6), so that actual GPP0 could be

calculated using [Eqn (10)].

GPP0 estimation

The underestimated GPP based on MODIS was obvious

when compared to the tower-based estimates (Fig. 5).

GPP0 appeared to be lower than GPPEC in summer, but

higher in the spring and late growing season (Fig. 5a–c).

Our final models for the three study sites accounted, on

average, for 87.6% (R2 5 0.876) of the variation in the

data, with a range of 91.8% (Site D) to 71.66% (Site S).

The accuracy of the GPP estimates increased by 32.6%,
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Fig. 4 Comparisons between vegetation indices (EVI, NDVI)

and gross primary production (GPP) among three sites

at Dongtan, China (a, Site D; b, Site M; c, Site S). Simple linear

regression models between GPP and vegetation (NDVI,

EVI) are shown with data combined from all three sites (d).

The solid line represents the relationship between GPP and

EVI (GPP 5 894.18EVI 1 57.826, R2 5 0.5203) and the dashed

line between GPP and NDVI (GPP 5 550.81DVI 1 38.768,

R2 5 0.4601).
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Fig. 5 Comparisons of seasonal changes in gross primary pro-

duction from eddy covariance towers (GPPEC), the MODIS-based

model (GPPMODIS), and the hybrid model (GPP0) Eqn (13) for the

2005 growing season at three sites (a, Site D; b, Site M; c, Site S).

Simple linear relationships between GPPEC, GPPMODIS,

and GPP0 are presented with data combined from all three sites

(GPPEC 5 3.29�GPPMODIS 1 68.133, R2 5 0.550; GPPEC 5 1.025

�GPP0�6.18, R2 5 0.876) (d).
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on average, ranging from 23.5% at Site S to 42.9%

at Site M.

Discussion and summary

Wetlands represent the largest component of the terres-

trial biological carbon pool, and thus play an important

role in the global carbon cycle (Chmura et al., 2003).

However, relatively few studies on carbon flux have

been conducted in coastal wetlands from an ecosystem

perspective compared to those in terrestrial ecosystems.

First, acquiring ground data in these ecosystems is

extremely costly both in time and labor due to access

difficulties (Smith et al., 1998). Second, there is a distinct

lack of long-term observations in these systems (http://

www-eosdis.oml.gov/fluxnet/). Our establishment of

carbon flux towers at Dongtan is a pioneering effort to

permanently measure carbon flux in coastal wetlands.

Because tidal dynamics affect water level and other

physical features, coastal wetlands encompass complex

hydrological environments. Accordingly, estimating

ecosystem production (e.g. GPP) of coastal wetlands

is challenging because of the significant amount of

carbon (dissolved and organic materials) carried by

sea waves, as well as CH4 emission that is not measured

by conventional EC techniques (i.e. CO2 only). Two

models, the LUE model and an integrated model intro-

duced in this study, were used to evaluate the biophy-

sical performance of GPP. The quantitative relationships

between the vegetation indices and carbon flux data in

our study area demonstrated the needs to improve LUE

model with EVI in terms of the magnitude of photo-

synthesis. Our integrated model used a combination of

autoregression analysis and comparisons of the differ-

ences between direct observations and estimates obtained

from a model based on satellite imagery (i.e. LUE) to

estimate GPP for three estuarine wetlands along a gra-

dient from the sea to inland at Dongtan of Chongming

Island, Shanghai, China. Unlike previous studies in non-

wetland ecosystems, the predicted GPP from the LUE

model (GPPMODIS) underestimated GPP relative to that

observed from eddy flux tower measurements (GPPEC)

(R2 5 0.47–0.65) for our sites. We attributed this under-

estimation to lateral carbon flux caused by tides and to

emission of carbon in non-CO2 form (i.e. CH4). Both these

processes are prevalent in coastal wetland ecosystems but

are not captured by the existing MODIS–LUE model.

Vegetation measurements from MODIS data provide

an indirect approach to predicting the differences be-

tween the simulated and measured GPP. Our results

(Fig. 5; Table 3) indicated that tidal activities, land

surface water content (LSWI), and vegetation indices

correlated strongly with carbon fluxes measured at the

EC towers. Our autoregression analysis [Eqn (13)] suc-

cessfully identified tidal height and ET as the most

important variables predicting the differences between

the two GPP estimates, thus accounting for lateral

carbon movement and CH4 emission and allowing us

to calculate actual production (i.e. GPP0). Predictions

based on autoregression models showed substantial

improvement in the accuracy of GPP estimation

(R2 increased from 0.55 to 0.87) (Fig. 5).

Estimating carbon flux in coastal wetlands is a per-

sistent challenge, especially in the context of global

warming, because these ecosystems are very sensitive

to changes in water level or climate (Chimner & Cooper,

2003; Weltzin et al., 2003), which will also likely result in

changes to freshwater inputs and timing for coastal

wetlands. Sea level rise and increasingly common ex-

treme weather events may modify the hydrology and

vegetation cover in coastal regions, potentially inducing

changes in carbon cycles through increasing the depth

or time of inundation or through decreasing the quan-

tity of sediments, and therefore nutrients, deposited

(http://ipcc-wg1.ucar.edu/wg1/wg1-report.html). For

example, Chimner & Cooper (2003) reported mean

CO2 emissions of 453.7 mg CO2-C m�2 h�1 when the

water table was between 0 and 5 cm below the soil

surface, but when the water table increased to 1–5 cm

above the soil surface, mean CO2 emissions decreased

to 231.3 mg CO2-C m�2 h�1. It has been reported that the

relative sea level of the Yangtze River Delta could

rise 25–50 cm by the year 2050, resulting in important

consequences for the carbon cycle of the region (Shi

et al., 2000). Therefore, integrating classical models such

Table 4 Correlation coefficients of DGPP with the land sur-

face water index (LSWI), evapotranspiration (ET), and tide

height (TH) at the three coastal wetland study sites at Dong-

tan, Shanghai, China

Site TH LSWI ET

D 0.86 0.80 0.95

M 0.90 0.70 0.82

S 0.74 0.57 0.61

Mean 0.82 0.70 0.80

All correlation coefficients are significant at Po0.05.

Table 5 Results of a principal component analysis (PCA)

incorporating the land surface water index (LSWI), evapotran-

spiration (ET), and tidal height (TH)

Component

Eigen-

value

Variance

explained

(%)

Eigenvectors

TH LSWI ET

PCA 1 2.50 83.31 �0.938 �0.879 �0.921

PCA 2 0.33 11.16 0.157 �0.474 0.292

PCA 3 0.17 5.52 0.308 �0.058 �0.259
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as LUE and autoregression model, that take into account

the unique properties of coastal ecosystems, can provide

a way to more accurately keep abreast of important

changes to the carbon cycles of coastal wetlands.

The effect of ET on CH4 release in wetland ecosystems

(e.g. Phragmites australis) is well documented. Grunfeld

& Brix (1999) reported that 62% of midday CH4 emis-

sion from vegetated sediments occurred through the

internal gas-spaces of plants and that transpiration-

induced transport of alternative electron acceptors into

the sediments can also contribute to higher CH4 oxida-

tion in vegetated sediments. ET, a major parameter

considered in our study, is an important proxy for the

effect of increasing the internal gas-spaces. A large part

(37.8%) of the plant community at Site M consisted

of Phragmites sp. (Table 1). Our integrated model im-

proved predictions of GPP at Site M by 42.9%, while

substantial improvements at Site D (27.1%) and Site S

(23.5%) were also achieved (Table 1). These results may

partially reflect the importance of ET to CH4 emission.

Though the predicted GPP for Site S from the integrated

model improved somewhat, the improvement was re-

latively limited compared to improvements for Sites D

and M. We attribute this to the lower vegetation density

at Site S. The aboveground plant biomass at this site

was the lowest among the three sites (Table 1), resulting

in less plant litter and a reduction in the effect of

evaporation and/or tidal height (Table 4).

To more fully examine the influence of the vegetation

indices, we analyzed the relationships between the

indices and TH (Table 7). Our results showed negative

correlations between the vegetation indices and TH

because the addition of water surface results in lower

reflectance of the near-infrared wavelength. The tide

effect amplified the bias in EVI measurement by

MODIS, leading to inaccuracy in MODIS-derived GPP

estimation. Figure 3 shows some clear sinking points of

EVI and NDVI in summer, especially at Site S near the

sea. In the Dongtan area, the average TH is significantly

higher in summer than in other seasons, and the higher

water level affects the measurement of the light spec-

trum. Compared with upland ecosystems (Xiao et al.,

2004a, 2005), however, the correlations between the

vegetation indices and GPP are low because of more

complex dynamics in wetland ecosystems (e.g. water in

tidal areas). Therefore, accurately estimating TH is a key

to improving the vegetation indices and forecasts of the

lateral carbon flow in coastal areas. Fortunately, with

the development of remote-sensing techniques, map-

ping tidal height is possible. Satellite microwave

sensors, such as the Radar Altimeter, Microwave

Scatterometer and SAS (synthetic aperture radar), can

detect sea level and sea wave height. High-frequency

(HF) radars can detect tidal circulation patterns and

estuarine outflow plumes in a large region with

sufficient spatial resolution (Marmorino et al., 2004;

Sentchev et al., 2006). By using phased-array HF radars,

Haus et al. (2006) measured the near-surface current

Table 6 Estimated coefficients and statistics for two autoregression (AR) models developed to predict DGPP from the land surface

water index (LSWI), evapotranspiration (ET), and tide height (TH) at the three study sites

Unstandardized

coefficients

Standardized

coefficients

T SignificanceB SE b

Model 1

TH 3.872 1.112 0.306 3.484 0.001

LSWI 88.524 54.194 0.131 1.633 0.106

ET 0.220 0.046 0.415 4.729 0.000

(Constant) �801.378 231.017 �3.469 0.001

Model 2

TH 4.076 1.103 0.323 3.695 0.000

ET 0.231 0.046 0.440 5.028 0.000

(Constant) �837.567 230.212 �3.638 0.000

The Prais–Winsten estimation method is used in AR model development. The mean and standard deviation of Rho in Model 1 were

0.683 and 0.075, respectively (Franses et al., 2004).

Table 7 Correlation coefficients (R) of tidal height (TH) with

the normalized difference vegetation index (NDVI) and en-

hanced vegetation index (EVI) at the three study sites

Site NDVI EVI

D �0.05 �0.08

M �0.04 �0.07

S �0.11 �0.18

All correlation coefficients were significant at Po0.05. The

mean TH values during MODIS overpass were used.
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velocities and wave heights near the mouth of the

Chesapeake Bay in 1997, finding good agreement with

results obtained from direct measurement. Once we

obtain the tidal height from the high spatial resolution

remote-sensing data, we can predict lateral carbon flow

over a broader area by integrating TH, ground-based

measurements of lateral carbon flow, and carbon circu-

lation models.

We have focused on TH and ET in this study as the

most important variables for predicting the differences

between GPPEC and GPPMODIS. However, there are

other potential factors that may also influence the lateral

flow of carbon and CH4 emission, such as climate, sea

temperature and salinity, soil physical and biological

variables, depth of the methane oxidizing horizon (Pot-

ter, 1997) and the extent of ‘outwelling,’ marsh produc-

tivity and vegetation coverage, tidal amplitude, and

geomorphology (Odum, 2000). Future studies are

needed to examine these variables. It is well known

that regional CH4 estimation is very important for

understanding the ecosystem carbon cycle, but biogeo-

chemical models concerning CH4 estimation in coastal

wetlands have been few because appropriate methods

to estimate the effect of water table fluctuations on

carbon cycles are yet to be discovered. Although CH4

emissions in forested wetlands have been simulated

successfully by Wetland-DNDC, a model derived from

PnET-N-DNDC (Cui et al., 2005a, b), tidal activities must

be considered if the model is applied to coastal wet-

lands. However, with the help of remote-sensing tech-

niques, especially the high spectral remote sensing

AVIRIS (Airborne Visible Infrared Imaging Spectro-

meter), we can improve our understanding of the regio-

nal methane flux (Leifer et al., 2006). The launch of

SCIAMACHY (Scanning Imaging Absorption Spectro-

meter for Atmospheric Chartography) provides us with

a new tool for analyzing the biogeochemical cycle of

methane, and its feasibility has been verified (Franken-

berg et al., 2005, 2006; Bergamaschi et al., 2007). Further

analyses on the relationships between CH4 emission and

the related variables derived from remote-sensing images

will likely become the reality in the near future.

In summary, we have simulated the seasonal dy-

namics of GPP for three sites in the estuarine wetland

ecosystem at Dongtan using the LUE model, and also

by combining the LUE model with in situ measure-

ments of climate data and MODIS vegetation indices,

using net CO2 exchange data for parameter estimation.

Predicted GPP from the LUE model did not agree well

with observed GPP from the eddy flux towers (R2

ranging from 0.47 to 0.64), with substantial differences

among the three sites. We hypothesized that the differ-

ences were due to lateral carbon flow related to tidal

activities and vertical CH4 emissions that are not ac-

counted for by EC measurements. To estimate GPP

more accurately for this estuarine wetland ecosystem,

we conducted autoregression analyses to identify sig-

nificant variables (i.e. ET, TH) capable of predicting

the difference between GPPEC and GPPMODIS.

Ground-based measurements of lateral carbon flow

and CH4 emission are needed to validate our models

before they can be applied to predicting GPP of other

coastal wetlands.
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