
Carbon and Carbonate Metabolism in Coastal Aquatic Ecosystems
Author(s): J.-P. Gattuso, M. Frankignoulle, R. Wollast
Source: Annual Review of Ecology and Systematics, Vol. 29 (1998), pp. 405-434
Published by: Annual Reviews
Stable URL: http://www.jstor.org/stable/221714
Accessed: 04/06/2009 14:20

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=annrevs.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

Annual Reviews is collaborating with JSTOR to digitize, preserve and extend access to Annual Review of
Ecology and Systematics.

http://www.jstor.org

http://www.jstor.org/stable/221714?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=annrevs


Annu. Rev. Ecol. Syst. 1998. 29:405-34 

Copyright ? 1998 by Annual Reviews. All rights reserved 

CARBON AND CARBONATE 
METABOLISM IN COASTAL 
AQUATIC ECOSYSTEMS 

J.-P. Gattusol,*, M. Frankignoulle2 and R. Wollast3 
1Observatoire Oceanologique Europ6en, Avenue Saint-Martin, MC-98000 Monaco, 
Principality of Monaco 

2Mecanique des Fluides Geophysiques, Unite d'Oc6anographie Chimique (B5), 
Universite de Liege, B-4000 Sart Tilman, Belgium; 
e-mail: michel.frankignoulle@ulg.ac.be 

3Laboratoire d'Oceanographie Chimique, Universit6 Libre de Bruxelles, Campus 
Plaine, CP 208, Boulevard du Triomphe, B-1050 Brussels, Belgium; 
e-mail: rwollast@ulb.ac.be 

*Present address and address for correspondence: Observatoire Oceanologique, ESA 
7076 CNRS-UPMC, B.P. 28, F-06234 Villefranche-sur-mer Cedex, France; 
e-mail: gattuso@obs-vlfr.fr 

KEY WORDS: carbon cycle, calcification, primary production, community metabolism, coastal 
ecosystems 

ABSTRACT 
The coastal zone is where land, ocean, and atmosphere interact. It exhibits a 
wide diversity of geomorphological types and ecosystems, each one displaying 
great variability in terms of physical and biogeochemical forcings. Despite its 
relatively modest surface area, the coastal zone plays a considerable role in the 
biogeochemical cycles because it receives massive inputs of terrestrial organic 
matter and nutrients, is among the most geochemically and biologically active 
areas of the biosphere, and exchanges large amounts of matter and energy with the 
open ocean. Coastal ecosystems have therefore attracted much attention recently 
and are the focus of several current national and international research programs 
(e.g. LOICZ, ELOISE). The primary production, respiration, calcification, car- 
bon burial and exchange with adjacent systems, including the atmosphere, are 
reviewed for the major coastal ecosystems (estuaries, macrophyte communities, 
mangroves, coral reefs, and the remaining continental shelf). All ecosystems 
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examined, except estuaries, are net autotrophic. The contribution of the coastal 
zone to the global carbon cycle both during pristine times and at present is dif- 
ficult to assess due to the limited metabolic data available as well as because of 
major uncertainties concerning the magnitude of processes such as respiration, 
exchanges at the open ocean boundary, and air-sea fluxes of biogases. 

INTRODUCTION 

The world coastline, which extends over about 350,000 km, displays a wide di- 
versity of geomorphological types and ecosystems. The coastal ocean-where 
land, ocean and atmosphere interact-is shallow (<200 m), covering approx- 
imately 7% (26 x 106 km2) of the surface of the global ocean. Despite its 
relatively modest surface area, the coastal zone plays a considerable role in 
the biogeochemical cycles because it (a) receives massive inputs of terrestrial 
organic matter and nutrient through run-off and groundwater discharge; (b) 
exchanges large amounts of matter and energy with the open ocean; and (c) 
constitutes one of the most geochemically and biologically active areas of the 
biosphere. For example, it accounts for 14-30% of the oceanic primary produc- 
tion, 80% of organic matter burial, 90% of sedimentary mineralization, 75-90% 
of the oceanic sink of suspended river load, and ca. 50% of the deposition of 
calcium carbonate (87, 109). Additionally, it represents 90% of the world fish 
catch (107). Its overall economic value has been recently estimated as 43% of 
the value of the world's ecosystem services and natural capital (29). The coastal 
ocean is also the area of greatest human impact on the marine environment since 
approximately 37% of the human population currently live within 100 km of 
the coastline (27). The anthropogenic pressure on it is increasing steadily. 

Despite its potential importance, the coastal ocean has been relatively ne- 
glected until recently, probably because of its intrinsic complexity. It is the 
focus of several national and international on-going research programs. The 
Land-Ocean Interactions in the Coastal Zone (LOICZ) program was established 
as part of the IGBP Global Change Programme in 1993, and the European Union 
has launched a coastal core project (European Land-Ocean Interaction Studies, 
ELOISE; Ref. 22). 

Several reviews on the biogeochemistry of the coastal ocean have recently 
been published (e.g. 87,132,146, 157).' The aim of the present paper is to 
review the available information using an ecosystem approach, with special 
emphasis on primary production, respiration, calcification, carbon burial and 

1 A recent and exhaustive book on coastal ecosystem processes (5a) has been published too late 
for discussion in this chapter. Readers are strongly advised to refer to this authoritative book for 
additional information. 
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exchange with adjacent systems, including the atmosphere. Whereas the meta- 
bolism of the open ocean is by far dominated by phytoplankton primary pro- 
duction, the coastal ocean exhibits a great diversity of primary producers, often 
inhabiting the same area, which makes it difficult to subdivide this region into 
subdomains. We first provide some definitions of metabolic terms and, after a 
brief review of land inputs in the coastal zone, discuss separately, and somewhat 
arbitrarily, estuaries, macrophyte communities, mangroves, coral reefs, and the 
remaining continental shelves. Finally, the contribution of costal ecosystems 
to the marine carbon cycle is reviewed. 

DEFINITIONS 

The contribution of any biological system (e.g. organism, community, or ecosys- 
tem) to the global carbon cycle relies on (a) the balance between organic carbon 
production and consumption, and (b) the balance between calcium carbonate 
precipitation and dissolution. A simple model allows prediction of the potential 
air-sea CO2 flux driven by these processes (52). A system is net autotrophic 
(in terms of organic carbon) when production is higher than consumption and 
is, conversely, net heterotrophic when consumption exceeds production. Note 
that autotrophy does not necessarily imply an air-to-sea CO2 flux because the di- 
rection of this flux is driven by the sign of the C02 pressure gradient across the 
air-sea interface. For example, upwellings are net autotrophic but are a source 
of CO2 to the atmosphere due to the high pCO2 of upwelled water (higher than 
360 /uatm, the present average atmospheric pCO2). 

It is difficult to apply these production concepts to data compiled from the 
literature. First, there is some confusion about which type of production is 
reported. Net primary production (Pn) is the balance between gross primary 
production (Pg) and respiration of the autotrophic components of the system 
(Ra). Excess production (E) or net ecosystem production (NEP) is the difference 
between Pg and ecosystem respiration (R), which includes both the autotrophic 
and heterotrophic components. Therefore E ( = NEP) is of interest for assessing 
the contribution of an ecosystem to net global processes. Another source of 
confusion is that it is not clear which type of production is measured by the 
14C technique (110). Last, metabolic data obtained on isolated photosynthetic 
organisms (Pn) are sometimes used instead of, or grouped with, ecosystem 
metabolic rate (NEP), which leads to overestimating NEP as the respiration rate 
of the heterotrophic components of the ecosystem is not taken into account. 

Units of moles per m2 and per year are used throughout this chapter. Some 
metabolic data expressed on a daily basis have been multiplied by 365 in order 
to get yearly rates; this, of course, neglects seasonal changes in the proces- 
ses. The following abbreviations are used: N-= sample size; p = probability; 
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Mmol= 106 moles; Gmol = 109 moles; Tmol = 1012 moles; Pmol = 1015 moles. 
Average data are reported as mean ?- standard error of the mean (SE). 

LAND INPUTS 

River input constitutes the main flux of material from the continents to the 
ocean and can considerably influence the carbon metabolism of the coastal 
zone. Furthermore, both the riverine fluxes of nutrients and organic carbon have 
been significantly affected by human activities and have probably modified the 

autotrophic vs heterotrophic conditions in estuaries and locally on continental 
shelves. 

Pristine and anthropogenic fluxes of dissolved and particulate carbon (C), ni- 

trogen (N), and phosphorus (P) have been thoroughly investigated by Meybeck 
(92,93). The global riverine flux of carbon is approximately 77 Tmol y-, 
among which are found 32 Tmol y-l of dissolved inorganic carbon (DIC, 41%), 
14 Tmol y-' of particulate inorganic carbon (PIC, 18%), 17 Tmol y-1 of dis- 
solved organic carbon (DOC, 22%), and 14 Tmol y-' of particulate organic 
carbon (POC, 19%). The additional river fluxes of C due to human activity are 
estimated to be around 8 Tmol y-1 (DOC and POC; 93). 

The natural flux of dissolved inorganic nitrogen is mainly due to nitrate 
(225 Gmol N y-l), with a small contribution of ammonia (40 Gmol N y-l). 
There is a significant contribution of dissolved and particulate organic nitrogen, 
estimated to be 700 and 2400 Gmol y-, respectively (93). Natural river fluxes 
of phosphorus are around 12 Gmol y-' for the inorganic fraction, with a similar, 
but less well known, flux of dissolved organic phosphorus (93). The particulate 
flux of phosphorus is also poorly known, but is considerably higher than the 
dissolved flux-probably of the order of 600 Gmol y-1 (93). Meybeck's figures 
must be considered as minimal estimates because of the lack of data from rivers 
in developing nations, including the high standing islands in Oceania, which 

may have greater inputs than suggested by Meybeck (JD Milliman, personal 
communication). 

River fluxes of N and P have been strongly affected by anthropogenic ac- 
tivities, leading to eutrophication in heavily disturbed areas. According to 

Meybeck (93), the anthropogenic riverine flux of total dissolved nitrogen and 
phosphorus are about 500 and 30 Gmol y-, respectively. Wollast (156) es- 
timated the river flux of particulate nitrogen of anthropogenic origin at 500 
Gmol y-1. The origins of the increased nutrient fluxes are numerous and, 
for nitrogen, include washout of fertilizer and intensive livestock operations. 
Discharge of untreated or partially treated industrial and domestic waste water 
is responsible for the high fluxes of nutrients and organic carbon observed in 

heavily populated areas. The magnitude of fluxes of dissolved carbon, nitro- 
gen, and phosphorus of anthropogenic and natural origins are similar (93). The 
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increased riverine inputs of these elements due to anthropogenic activities have 
profoundly affected estuaries and the adjacent coastal zones (see next section). 
In the case of large rivers, the dissolved components are directly transferred to 
the coastal zone, whereas some of the particulate fraction accumulates in the 
delta. When river water passes across estuarine systems, large changes in the 
fluxes and speciation of the constituents typically occur. 

ESTUARIES 

Estuaries are difficult to define (see 69), and there is no consensus on their 
global surface area. We use a tentative estimate of 1.4 x 106 km2, derived from 
areas where the salinity is lower than 34 (159). From a biogeochemical point 
of view, an estuary can be defined as a semi-enclosed zone where river water 
mixes with sea water. It should be noted, however, that in the case of large 
rivers, the flow is sufficiently great that water mixing mostly occurs on the 
continental shelf rather than in an embayment, and that the material carried 
by rivers is directly delivered to the shelf. The ecology and geochemistry of 
estuarine ecosystems, including salt marshes, have been the subject of recent 
reviews (39,58, 68,154). 

Estuaries are pathways for the transfer of dissolved and particulate material 
from the continent to the marine system through rivers. They exhibit a wide 
range of diversity in terms of geomorphology, geochemistry of the drainage 
basin, river flow, and tidal influence. These affect physical attributes such as 
vertical stratification, longitudinal gradients, and residence time of fresh wa- 
ter. Estuaries are extremely dynamic systems usually characterized by strong 
physico-chemical gradients, enhanced biological activity, and intense sedimen- 
tation and resuspension (69). Profound changes are observed in the speciation 
of organic and inorganic compounds in response to these factors, particularly 
in macrotidal estuaries, where the tidal regime leads to an increased residence 
time of fresh water in the estuarine mixing zone and to the generation of a 
turbidity maximum. 

One of the major changes due to human activity is the increased respiration 
of detrital organic carbon that usually occurs in the upper part of the estuaries, 
often in the turbidity maximum, and can lead to anoxic conditions that affect 
the behavior of other elements in the water (154). The turbidity maximum in 
macrotidal estuaries or deltas of large rivers is also an area of intense shoal- 
ing. Due to the flocculation of colloidal material transported by rivers when 
the salinity increases and to the presence of large quantities of particulate or- 
ganic carbon, the sediments deposited are organically rich muds characterized 
by intense anaerobic processes. A large fraction of the particulate load trans- 
ported by rivers can accumulate in these areas and never reach the continental 
shelf. 
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The balance between autotrophy and heterotrophy has been modified by 
human activity, but in a way still difficult to identify because of antagonistic 
responses (19,58, 67, 94, 125, 132). The increased nutrient load leads to eu- 
trophication, enhances net ecosystem production, and shifts the system toward 
increased autotrophy (e.g. 66, 85). On the other hand, respiration of the organic 
carbon leads to increased heterotrophy. Additionally, light may become limit- 
ing for primary production in the upper part of estuaries (e.g. 63); respiration is 
then the dominant metabolic process, and an oxygen-depleted zone may occur, 
stimulating various anaerobic processes. In such areas, the partial pressure of 
CO2 in surface water may reach several thousand /zatm, inducing very large 
fluxes of CO2 to the atmosphere (45). 

As a result of light limitation and nutrient availability (28), the maximum pri- 
mary production in many estuaries occurs at intermediate salinities (125). NEP 
values in the literature display a wide range of variation (+2 to -23 mol 
C m-2 y-'), which may be partly due to different methods used (58). The 
average value indicates that estuaries are net heterotrophic with a NEP signifi- 
cantly lower than 0 (-6 ? 2 mol C m-2 y-l; N = 21, t-test, p = 0.001) and 
an average Pg/R ratio of 0.8 ? 0.1 (Table 1). Heterotrophy is more pronounced 
in the salinity range 0 to 30, at least in macrotidal (Figure 1A), where large 
CO2 supersaturation is always observed (66; M Frankignoulle, unpublished 
observations) as a result of organic matter respiration. In the Scheldt estuary 
(North Sea), approximately 60% of the respiratory CO2 is released to the atmo- 
sphere (45), 26% is transferred to the sediment (94, 101), and only 14% remains 
in the water column. Global Pg of estuaries is estimated to be approximately 
31 Tmol C y-1. The NEP is -8 Tmol C y-l, a value that is in good agreement 
with a previous estimate (132) of -7 Tmol C y-'. The benthic contribution to 

Table 1 Surface area and metabolic data for the coastal zone (this paper) and open ocean 

(157)a 

Surface area Pg Pg NEP 
System (106 km2) (mol C m-2 y-l) (TmolC y-') (TmolC y-1) Pg/R 

Coastal ecosystems 
Estuaries 1.4 22 31 -8 0.8 ? 0.05 
Macrophyte- 2.0 87 174 37 1.1 ? 0.1 

dominated 
Coral reefs 0.6 144 86 6 1.3 ? 0.2 
Salt-marshes 0.4 185 74 7 1.2 ? 0.1 
Mangroves 0.2 232 46 18 1.4 ? 0.4 
Remaining shelf 21.4 18 377 171 1.4 ? 0.3 

Sum 26 789 231 
Open ocean and slope 334 10 3396 

aThe sources of the surface area are given in the text. The areal gross primary production and NEP are the 
average values of data collected from the literature (see legend of Figure 1). Pg and NEP of macrophyte- 
dominated ecosystems were adjusted empirically by a factor x 0.5 to take into account the bias in the data 
base (see text). The Pg/R ratio was estimated using a geometric regression technique (see Figure 1). 
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total respiration is in the range of 25-50% (58). The ratio of benthic to plank- 
tonic respiration depends on the depth of the water, but planktonic respiration 
is higher than benthic respiration even in a shallow (ca. 3 m) estuary such as 
Tomales Bay, California (43). 

Coastal eutrophication resulting from river inputs most often affects a rel- 
atively limited area in the immediate vicinity of the river mouth. The anoxic 
conditions in the water and/or in the sediments, associated with long residence 
times of the fresh water in estuaries, are extremely favorable for denitrification. 
A large part of the nitrate load is lost during the estuarine journey and never 
reaches the coastal zone. The importance of both the burial of nutrients in 
estuarine sediments and the denitrification process depends on the tidal prism 
and the depth of the estuary, two factors that affect the residence time of river 
water in the system (102). 

Finally, carbon dioxide is not the only biogas produced in estuaries. The 
elevated nutrient loading enhances nitrous oxide (N20) production via denitri- 
fication of nitrate in the oxygen-depleted zones and nitrification of ammonia in 
more aerated waters (e.g. 136, 154). The photoproduction of carbon monoxide 
(CO) in surface water is probably stimulated by terrestrially derived dissolved 
organic matter. Anoxic sediments in the region of the turbidity maximum en- 
hance hydrogen sulfide (H2S) and methane (CH4) production, with subsequent 
emission to the atmosphere. Eutrophic conditions are also very favorable for 
the production of gases of importance in climate regulation such as dimethyl 
sulfide (DMS) and carbonyl sulfide (COS). Despite their potential importance 
in biogas emission, very little is known about the coupling of estuaries to the 
atmosphere. On a global scale, estuaries may act as a significant source of these 
gases, and the magnitude of this source deserves further investigation. 

MACROPHYTE-BASED ECOSYSTEMS 

Macrophytes (seagrasses and macroalgae) do not constitute ecosystems by 
themselves and can be found in any shallow coastal or estuarine ecosystem. 
They cover approximately 2 x 106 km2 worldwide (149), while the surface 
area available for micro- and macrophytobenthos has been estimated to be 
6.8 x 106 km2 (25). The areal biomass of macrophytes is about 400 times higher 
than that of phytoplankton, and their turnover time is much larger (ca. 1 year vs 
a few days). These attributes make them play a potentially significant role in 
the global carbon cycle (128). The macrophyte contribution to metabolism is 
highly variable among ecosystems, depending on their relative surface cover. 
For example, macrophytes account for less than 1% of net primary production 
in turbid and nutrient-rich estuaries, and more than 50% in non-turbid ones (58). 
Metabolism generally exhibits a strong seasonality in macrophyte-dominated 
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ecosystems. The balance of organic carbon varies widely depending on factors 
such as the dominant species, interspecific competition, climatic conditions 
(temperature and light), nutrient availability, herbivore pressure, and anthro- 
pogenic disturbance (1, 41, 42a, 42b, 58, 73, 88, 89, 103). Data are available 
on net primary production of several species of macrophytes (see 25), but there 
is comparatively little information on Pg and R at the community or ecosystem 
level. Epiphytes, despite their comparatively low biomass, can significantly 
contribute (up to 20%) to macrophyte production (e.g. 25,58). 

Studies on tropical seagrass beds have suggested that their carbon cycle is 
balanced: low export is balanced by allochtonous inputs of organic carbon, 
and most biomass is either stored or remineralized within the system (41,42a). 
Some seagrass communities are nutrient limited (1), whereas others are not 
(42b), demonstrating the variability of nutrients status depending on species and 
sediment types. Our compilation of data (Figure lB) suggests that macrophyte- 
dominated ecosystems are net autotrophic with aNEP of 37? 13 mol C m-2 y-1 
(N = 35), a value that is significantly different from 0 (p = 0.008). An earlier 
estimate was 42 mol C m-2 year-1 (128). The average Pg/R ratio is 1.1 ? 0.1 
(Table 1). 

The fate of Pn depends on the macrophyte ecosystem considered. Pn can be 
grazed by herbivores, exported outside the system, buried within the sediment, 
or enter the detrital pathway. Duarte & Cebrian (37) have compiled data from 
the literature on these pathways for several marine primary producers, including 
macroalgae, and seagrasses. Their major conclusions are that (a) decomposition 
within the system is an important process for each macrophyte system (>40% 
of Pn); (b) herbivore pressure is significant for macroalgae only (>30%); (c) 
export is significant (24-43%); and (d) storage within the sediment is negligible 
for macroalgal communities, but not for seagrass (>15%). These trends are 
quite variable from species to species; for example, 80% of the production of 
four Mediterranean seagrasses are consumed by detritivores (23). 

Buried material within the sediment is estimated to be four times more abun- 
dant in higher plant than in algal communities. Marine angiosperm communi- 
ties, which account for 4% of the oceanic net primary production, could store 
up to 30% of the total oceanic buried carbon (37). Moreover, seagrasses con- 
tain more carbon than N and P compared to pelagic communities: Their C:N:P 
ratios range from 204:4:1 to 3550:61:1 (126), with an average of 474:24:1 (36). 

Posidonia oceanica is characterized by a large difference between above- 
ground (leaves) and below-ground (matte = roots and rhizomes) parts: the 
turnover of leaves is about 1 y compared to matte turnover on the order of a 
century (121). The latter behaves as a sink for biogenic material (120, 121), 
which has been estimated at 26% of the produced carbon (90). Large differences 
have, however, been observed from site to site, suggesting that accretion rate is 
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controlled by local factors (91). Light also controls the transfer of C from 
shoots to roots in the eelgrass Zostera marina, underlining the importance of 
light in light-limited areas (162). 

The global gross primary production and NEP of macrophyte-dominated 
ecosystems estimated from our compilation of the literature are 348 and 74 
Tmol C y-1. These figures are likely overestimates because (a) more data are 
available for the more productive tropical than for the less productive temper- 
ate ecosystems, and (b) more data were obtained in very shallow areas than 
in deeper, light-limited areas. An empirical adjusting factor of 0.5 can be ten- 
tatively and arbitrarily used to account for these biases; the resulting estimate 
for Pg and NEP are 174 and 37 Tmol C y-l, respectively (Table). Previous 
estimates of NEP range from at least 83 (128, 140) to 254 Tmol C y-1 (25, 33). 
Macrophyte-dominated ecosystems appear to be net C sinks but Smith's (128) 
conclusion of 1981 that their quantitative significance in the global carbon 
budget was poorly known still stands today. 

There is major concern about the survival of seagrasses worldwide due to 
anthropogenic disturbances. While large, presumably natural, changes in sea- 
grass distribution have occurred (113), human activity severely disturbs seagrass 
communities in several ways. The eutrophication of coastal areas results in a 
higher pelagic activity, with subsequent light limitation to benthic communities 
that induces a decrease in primary production (14), or even seagrass mortality 
(103). In Chesapeake Bay, it has been suggested that the long-term survival of 
Zostera marina depends on water turbidity rather than on changes in the nutrient 
concentration or salinity (98). Brown tides, induced by coastal eutrophication, 
are major causes of seagrass decline (104,141). However, primary produc- 
tion depends more on temperature than on light availability in some seagrasses 
species such as Thalassia testudinum and Cymodocea nodosa (80, 88). A strong 
correlation has been observed between the standing stock of Zostera marina 
in a Netherlands estuary and the concentration of dissolved silicon that may 
decrease due to coastal eutrophication (59). Large tidal ranges combined with 
stresses are responsible for the decline of Z. marina in Long Island Sound (73). 
Worldwide, the mortality of seagrasses is higher than growth rate (89). 

MANGROVES 

Mangroves are intertidal forests growing above mean sea level, distributed 
on sheltered shores of the tropics and subtropics (31?N to 39?S); they cover 
0.18 x 106 km2 (138). Mangrove ecosystem function has been the subject 
of several reviews (3,4,56,86, 115,144). The major primary producers are 
mangrove trees, but seedlings, macroalgae, periphyton, and phytoplankton also 
contribute. The respective contribution of these producers to total mangrove 
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primary production varies with their relative surface cover, delivery of nutrients, 
and turbidity. 

Net assimilation of leaves and above-ground P, of mangrove trees have been 
estimated using indirect (allometric) methods, but Pn of whole trees is poorly 
known because there are no reliable estimates of the respiration rate of the stem 
and roots (including the above-ground portion known as prop roots) due to the 
unknown contribution to gas exchange by non-photosynthetic components (26). 

Community metabolism of mangrove trees displays considerable variation 
at both the local and regional scales, primarily as a response to environmental 
forcings (tide, climate, and seawater composition); forest type is of secondary 
importance (16). The net primary production of mangrove trees derived from 
indirect measurements ranges from 12 to 142 mol C m-2 y-1 (mean = 58 ? 
7; N = 22). The only measurement of root production is an indirect estimate 
of about 9 mol C m-2 y-1, i.e. ca. 10% of the above-ground P, of that site (77). 
Twilley et al (144) compiled data on wood production and provided a global 
estimate of 13.3 Tmol C y-1. 

Most leaf production enters the detrital pathway as litter fall (119). Leaves 
and, to a lesser extent, twigs, branches, and bark are shed as litter throughout the 
year. Reproductive parts are shed seasonally. Litterfall, which is negatively cor- 
related with latitude, ranges from 5 to 70 mol C m-2 y-1 (mean = 32; Ref. 124). 

Submerged primary production is often limited by high turbidity and changes 
in salinity. Water column metabolism is largely heterotrophic (e.g. 57, 106, 116). 
Despite its generally low quantitative importance, phytoplankton production 
may play an important role in sustaining secondary production because of the 
poor nutritional quality of mangrove detrital material (117). Macrophytes are 
generally absent from mangrove ecosystems, but seagrass beds can thrive in 
areas adjacent to mangrove stands and significantly contribute to total primary 
production of lagoons (31). Prop root periphyton can be relatively important 
when shading is moderate (Pn = 12-34 mol C m-2 y-1). Benthic microal- 
gal production is generally very low or undetectable (e.g. 5) because of: (a) 
light limitation resulting from shading by the mangrove canopy (76), (b) in- 
hibition by sedimentary organic compounds such as tannins (see 3), and (c) 
nutrient limitation (76). Pg of benthic microalgae ranges from 0 to 26 mol C 
m-2 y-1 (mean = 6 ? 2; N = 28). 

Sediment respiration is different in submerged and emergent conditions, and 
data obtained with the widely used 02 technique are doubtful because anaer- 
obic processes are of major importance in mangrove sediments (3). There is, 
however, little doubt that the sediment is largely net heterotrophic (average 
Pg/R = 0.6; Pn = -3 ? 1.5 mol C m-2 y-2; N = 31). 

The major source of C for benthic heterotrophs is litter fall, followed by 
deposited phytoplankton and benthic micro- and macrophytes. The retention 
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and processing of litter within the mangrove system is much greater than ini- 
tially thought due to consumption and hiding by crabs (116). Mangrove leaf 
litter supports a very high benthic bacterial productivity (2, 15,100, 139). It 
is now recognized, despite methodological uncertainties (2), that carbon flow 
through microbial pathways probably accounts for a large proportion of total 
C flow in mangrove ecosystems. Densities of micro-, meio-, and macrofauna 
are generally very low and are not correlated with bacterial production (3). The 
so-called 'carbon sink hypothesis' (3,4) satisfactorily addresses this discrep- 
ancy by suggesting that only a small proportion of the large bacterial biomass 
is consumed in the sediment and that the remaining bacterial carbon is re- 
cycled very efficiently though natural mortality and carbon turnover within 
the sedimentary microbial food web. There are very few estimates of total 
community metabolism of mangrove systems (Figure 1C). Most systems in- 
vestigated are net autotrophs as shown by a NEP significantly different from 
0 (89 ? 28 mol C m-2 y-l; N = 12; p = 0.008), despite large variation of the 
Pg/R ratio (1.4 ? 0.4; N = 9; Table 1). 

The net organic matter produced can be accumulated or exported to adja- 
cent systems. The content of organic carbon in mangrove sediment varies 
widely depending on the type of forest and the geomorphology of the site 
(e.g. 0.21-18 wt%; Ref. 96a). The rate of sedimentation is 0.3-2.4 mm y-l, 
and the average rate of C accumulation is 23 mol C m-2 y-1 (144). Burial 
leads to the accumulation of peat deposits containing up to 17 mmol C g sed.-1 
(145). The total carbon sequestered in mangrove peat is about 1.7 Tmol C y-1 
(144). The quality and quantity of material exported from mangroves de- 
pend on forest type (riverine, fringe, or basin) and productivity, as well as 
on physical constraints (strength and frequency of tidal inundation, river flow, 
wind speed and direction) and biological forcings (e.g. consumption of litter- 
fall by macrodetritivores). In open habitats subjected to tidal flushing (riverine 
mangroves), a large proportion of leaf litter is exported as debris to the adja- 
cent systems (bays) where it is decomposed (ca. 30% in Pacific mangroves; 
Ref. 118). Inland habitats (basin forests) are comparatively less subject to tidal 
flushing, export is very low (e.g. <0.3%; Ref. 81), and decomposition pri- 
marily occurs within the mangrove. As a result, the material exported com- 
prises little particulate matter but a greater proportion of dissolved organic 
compounds (e.g. 143). Consumption and hiding of detritus by macrodetriti- 
vores can greatly diminish (by up to 30%) the amount of litter available for 
export. 

Physical forcing, and its effect on export, has been relatively well studied. 
Outwelling is favored by tidal flow, rates of which are higher during ebb tide 
than flood tide (152), but lateral trapping in forested tidal rivers (152) and high- 
salinity plugs (150) can limit export. Export of DOC can change seasonally 
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with tidal inundation and rainfall. DOC is clearly the dominant form of total 
exported C in two basin forests in Florida (ca. 70%; 3 and 4 mol C m-2 y-l; 
Ref. 143). To our knowledge, the contribution of land-derived DOC and in situ 
production to total DOC export has not been estimated, but a small net import of 
DOC (< 1% of Pn) was measured in a tidally dominated (i.e. without terrestrial 
runoff or groundwater input) creek at Hinchinbrook Island, Australia (18). It is 
therefore possible that a large proportion of DOC export may actually originate 
with freshwater inputs (116), although there is also evidence of export in a non- 
estuarine mangrove forest (99). Export of DOC via groundwater seepage has 
received very little attention, although it represents 20% of the TOC exported 
from a Florida forest (143). Mangroves generally act as exporters of organic C, 
although some forests are net importers due to a limited inundation regime (82). 
Global export has been estimated at 4.2 Tmol C y-1 (144). Exported C can 
have a significant influence on nearshore benthic processes (6), especially where 
hydrodynamic features inhibit the mixing of estuarine and offshore waters. Its 
influence appears to be limited offshore (5-15 km) due to its dispersion and its 
refractory nature (116). 

No data are available for air-water CO2 fluxes in mangrove areas, and there 
are only limited data on seawater pCO2, which seems to remain higher than 
atmospheric pCO2 during most of a diurnal cycle (at ca. 1114 /tatm) in two 
mangrove areas in India (53). Efflux of methane from mangrove sediment 
appears to be very small (<0.1 mmol m-2 y-'; Ref. 95), but significant fluxes 
have been measured when pore water salinity is < 1 (9). Mangrove forests are 
net autotrophic, with a global NEP of 18 Tmol C y-1 (Table 1). Marshes, another 
angiosperm-based ecosystem, bear some similarity to mangrove forests, but 
are not fully discussed here. The surface area of these temperate ecosystems is 
twice that of mangroves (0.4 vs 0.2 x 106 km2), but marshes make a smaller 
contribution to the global carbon cycle (NEP = 7 vs 18 Tmol C y-1) because 
they are less net autotrophic (Pg/R ratio: 1.2 vs 1.4; Figure 1D and Table 1). 
NEP data based on burial rates can be greatly overestimated in some marsh 
communities because import and storage of allochthonous carbon is not always 
accounted for (96b). 

Mangroves are carbon sinks but are being increasingly cleared by humans 
for activities such as wood production, farming, mining, peat extraction, and 
other forms of land exploitation (56). It is estimated that 50% of mangrove 
ecosystems have been transformed or destroyed by human activities (160). 
The loss of mangrove forest not only diminishes fixation of atmospheric CO2 
and C burial, but also results in the oxidation and release to the atmosphere of 
the organic C stored in sediments. Approximately 39.3 Mmol C are released per 
ha of mangrove swamp cleared and excavated, and 31.3 Mmol C are released 
per 1000 t of dry peat combusted (32). 

417 
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CORAL REEFS 

Coral reefs are carbonate structures located at or near sea level, dominated 
by scleractinian corals and algae, that display high rates of organic carbon 
metabolism and calcification. They are mostly distributed in the tropics, al- 
though they can also reach higher latitudes (32.5?N; 31.5?S), and they cover 
approximately 0.6 x 106 km2 (71, 127). Information on various aspects of reef 
ecology and metabolism can be found in recent reviews (12,38, 137). 

Most community metabolism data were obtained on reef flat communities, 
which are technically suited for measurement because they are relatively shal- 
low, protected from the swells and subject, in many cases, to a unidirectional 
flow, which allows the use of flow respirometry techniques. Consequently, 
despite the numerous community metabolism data available, the database is 
biased, and there is comparatively little information available for reef slopes, 
lagoons, and complete reef systems. The contribution of reef slopes to reef 
metabolism cannot be ignored in principle, since slopes are generally the most 
actively growing part of the system. However, they represent a small contribu- 
tion to the surface area of reef systems (15% in the central Kaneohe Bay sector; 
Ref. 135), and it is likely that a relatively large proportion of their communities 
are light-limited. 

Reef metabolism is dominated by benthic processes. Phytoplankton commu- 
nity production is very minor, often dominated by picoplankton, and ranges 
from 0.3 to 22 mol C m-2 y-1 in atoll lagoons (reviewed in 24). The highest 
values were in the few sites with elevated nutrient concentrations. 

Coral/algal reef flats display a wide range of Pg (79-584 mol C m-2 y-'), 
R (76-538 mol C m-2 y-1), and G (5-126 mol CaCO3 m-2 y-1). This vari- 
ability is owing to the absolute and relative surface area covered by the major 
communities (e.g. corals, macrophytes, and sediments) as well as to seasonal 
and environmental conditions (see 84). Modal rates of metabolic performances 
have nevertheless been proposed (e.g. 70, 129). Such standards can be applied 
only to reefs having similar structure and zonation, and have little predictive 
value (111). The average Pg/R ratio, estimated using a geometric regression 
technique, is 1.07 ? 0.1 (N = 43), perhaps indicating a slight net autotrophy. 

Algal-dominated reef communities generally display higher rates of organic 
C metabolism (Pg = 30-1369 and R = 6-910 mol C m-2 y-l) and lower 
rates of net calcification (G = -0.4 to 40 mol CaCO3 m-2 y-1) than coral/algal 
reef flats. Sediments represent the largest physiographic zone of many reef 
ecosystems (e.g. 95% of the surface area of the SW Caledonian reef com- 
plex; J Clavier, personal communication) but have received comparatively 
less attention than coral/algal reef flats, probably because carbon and carbon- 
ate fluxes in reef sediments are of lower magnitude (Pg = 8-82 and R = 
1-73 mol C m-2 y-1; G = -1 to 12 mol CaC03 m-2 y-l). Sedimentary 
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areas contribute 3-30% of the community excess production of a Pacific bar- 
rier reef flat (18). 

There are only nine data sets for complete reef systems, some of which do 
not provide both organic and inorganic carbon metabolism. Pg and R are well 
correlated (Figure 1E). The estimated Pg/R ratio (1.28 ? 0.2; Table 1) sug- 
gests a net autotrophy, although it is not statistically significant. It is, moreover, 
dominated by a single data set (75), which casts some doubt on that conclu- 
sion. Additionally, Pg and R are measured separately, and each has significant 
error terms, which are cumulative when calculating the Pg/R ratio or NEP. 
The approach of ecosystem stoichiometry (e.g. 130) enables estimation of NEP 
directly by upscaling changes in the concentration of dissolved inorganic phos- 
phorus to NEP using the ecosystem C:N:P ratio. The overall average NEP 
obtained with both approaches is slightly higher than the previous estimate of 
Crossland et al (10 ? 7 vs 3 mol C m-2 y-1; Ref. 30) but is not significantly 
different from 0 (p = 0.21, N = 9). It can therefore be concluded that the 
organic C metabolism of complete reef systems is essentially balanced. The 
average net calcification rate is 10 ? 3 mol CaCO3 m-2 y-1 (N = 7). 

Several sources of nutrients sustain reef primary production, but the contri- 
bution of each is largely site-dependent and generally poorly known. NEP of 
reef ecosystems is not significantly different from that of tropical oligotrophic 
oceans (30). It seems unlikely that reef productivity is sustained by the same 
nutrient source as the surrounding ocean (advective inputs from below) due to 
physical limitation, although active upwelling along the slope (e.g. 151) and 
internal tidal bores (83) can sometimes provide a significant nutrient supply. 
Smith (129) offered two alternative explanations. First, the C:N:P ratio of reef 
benthic plants (550:30:1; Ref. 7) is much higher than the typical Redfield ratio 
(106:16:1). Therefore, the production of organic carbon is much more efficient 
in reef systems per unit of nitrogen and phosphorus. Second, oceanic wa- 
ter impinging reefs is typically depleted in nitrogen relative to phosphorus. 
The well-established capacity of several reef organisms and physiographic 
zones to fix nitrogen enables reef communities to overcome nitrogen limitation. 
The convection resulting from upward geothermal heat flow drives circulation 
of nutrient-rich deep oceanic water within the reef matrix (endo-upwelling; Ref. 
122). The magnitude of this nutrient source remains unknown, but it is proba- 
bly relatively small (79) and not required to sustain excess primary production 
on reefs (142). Last, phytoplankton and planktonic microbial communities ad- 
vected from the ocean are a significant source of nutrients; their retention rates 
are virtually identical to the net excess primary production of a Pacific reef 
(2.7 vs 3 mol C m-2 y-; Ref. 8). 

The net organic and inorganic carbon production can be accumulated as 
biomass or reef structure, buried in sediments, or exported to adjacent ecosys- 
tems. The importance of these alternative fates is poorly known, but it is 
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somewhat different for organic and inorganic carbon. The rate of CaCO3 ac- 
cumulation is limited by sea level on reef flats (ca. 1 mm y-1; see 135) but not 
in lagoons. A budgetary approach (135) suggests that 65% of total carbonate 
production of an hypothetical atoll is stored in the lagoon, 25% is exported, and 
about 10% is accumulated in the fore reef and reef flat areas. The rate of CaCO3 
export increases sharply as lagoon area decreases. In contrast, there is little ac- 
cumulation of organic carbon in reef sediments (ca. 15% of E), which contains 
typically less than 0.7 weight % C (reviewed in 137), and in biomass (ca. 2% 
of E; 55). Approximately 10% of E is available for human harvest, a potential 
not realized at present, but most of the very little net excess organic carbon 
produced appears to be exported as particulate or dissolved organic carbon or 
in the form of migrating organisms (50-75% of E; 30,135). 

Air-sea C02 fluxes in reef ecosystems and communities can be investigated 
using either direct measurements or a budgeting approach based on community 
metabolism data (52). The few direct measurements indicate that the sites stud- 
ied were sources of CO2 to the atmosphere at the time of measurement (46, 51). 
The same conclusion was reached using indirect estimates (50,52, 131,148). 
Data on organic C burial in reef sediments support such conclusion on longer 
time scales (21). A few recent reports suggest, however, that some fringing reefs 
are sinks for atmospheric CO2 (62, 74, 75, 161), and localized results have been 
extended to a global scale (64). Although the interpretation and generalization 
of some of these data were inappropriate (21,48), most studies suggesting that 
reefs may be sinks of CO2 were carried out on fringing reefs, which are more 
likely subject to anthropogenic stresses than are other reef systems. It is well es- 
tablished that such disturbances shift reef communities from a coral-dominated 
to an algal-dominated state (e.g. 35,61). The resulting changes in community 
metabolism (increased primary production and/or decreased calcification) can 
turn the systems from a C02 source into a CO2 sink (49). 

The global production of reef carbonate (6 ''mol CaCO3 y-l) represents, 
respectively, 26% and 11% of the coastal and total marine CaCO3 precipitation 
estimated by Milliman (97). Crossland et al (30) have estimated the global 
significance of reef metabolism to oceanic processes. Gross primary production 
is 86 Tmol C y-, a value higher than the previous estimate of 58 Tmol C y-1 
(30) due to the recent addition of metabolic data collected in algal-dominated 
fringing reefs. The NEP is probably better constrained than Pg as there are 
more data because of the inclusion of some direct determinations. Our estimate 
of NEP is slightly higher than the previous estimates of Crossland et al (6 vs 1.7 
Tmol C y-1; Ref. 30) for reasons outlined above. As pointed out by Ware et al 
(148) and Smith (131), coral reefs have a minor role in the present global carbon 
cycle, and their release of CO2 is 0.4-1.4% of the current rate of anthropogenic 
CO2 production. According to the so-called coral reef hypothesis, reefs may 
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have played a significant role in the change of atmospheric pCO2 that occurred 
during the last glacial-interglacial cycle (10, 20, 105). 

CONTINENTAL SHELF 

The continental shelf comprises the area between the continents and the open 
ocean. It is limited by the ocean margin, which corresponds to the abrupt 
bathymetric change that occurs between the shelf and the slope, at an average 
depth of 130 m. The world coastline is about 350,000 km long; the shelf has 
a mean width of 70 km. The total surface area of the coastal zone represents 
26 x 106 km2 or 7% of the total surface area of the ocean (360 x 106 km2). 
Here we consider the main aspects of the carbon cycle occurring on the con- 
tinental shelf, with the exception of the ecosystems discussed in the previous 
sections. Several recent reviews (87, 97, 132, 146, 157) provide detailed infor- 
mation on the carbon and carbonate cycling of continental shelves. There are 
distinct differences in physical, chemical, and biological properties of the ner- 
itic and oceanic provinces, leading to marked gradients that generate fluxes at 
the ocean margins. Because of the diversity of processes at the margins and the 
large variability of coastal systems, the exchanges of energy and of dissolved or 
particulate matter between the shelf and the open ocean remain poorly under- 
stood (87). The circulation and mixing of water are especially complicated by 
the steep bathymetric change introduced by the continental slope and rise (62). 
As a consequence, the exchange of organic matter and nutrients between the 
coastal zone and the open ocean is poorly known. Attempts are being made, 
in the framework of LOICZ, to establish mass balances of dissolved nutrients 
using a limited amount of field data for a variety of shelf environments (54). 
The difference between the input and output fluxes of phosphorus is scaled to 
carbon and is assumed to represent the NEP of the system considered. One of 
the critical data required in these calculations is the mixing rate of water masses 
at the open ocean boundary. It is estimated from the mass balance of salt, and 
usually assumes the system is at steady state, which may be a crude approxi- 
mation on an annual basis. The development and improvement of models may 
soon provide a better evaluation of the role of the coastal zone on a global basis. 
We cite in this section the studies for which the fluxes of carbon linked to various 
elemental processes have been estimated for sufficiently long periods of time. 

Unfortunately, in only a few studies have Pg and the total (benthic and pelagic) 
respiration of coastal waters been investigated simultaneously. The average 
areal Pg is 18 ? 2 mol C m-2 y-l, and the corresponding global gross primary 
production is 377 Tmol C y-1 

The relative importance of recycled production, resulting from the regen- 
eration of nutrients by the bacterial degradation of dead biomass, and of new 
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production sustained by nutrients from an external source, is different on the 
continental shelf and in the open ocean. New production represents between 
5% and 15% of Pg in the oligotrophic central gyres of the open ocean (40), 
and its contribution is close to 50% on the shelves if the remineralization of the 
nutrients in the sediments is taken into account (72,157). In the open ocean, 
new production is essentially due to upwelling and vertical mixing of deep, 
nutrient-rich water with surface water. The source and fluxes of nutrients re- 
quired to sustain the high productivity of the coastal zone is still controversial. 
The origin of nutrients is much more complex than in the open ocean and in- 
volves fluxes at the margins of deep ocean water, in addition to riverine and 
atmospheric inputs. Furthermore, nutrients recycled in the sediments can be 
rapidly transferred to the overlying waters by diffusion. 

Most attention has been devoted to the fluxes of nitrogen, which is often 
the limiting nutrient. The occurrence of two species, ammonium and nitrate, 
also enables one to distinguish between new and recycled production. The main 
source of nitrogen is the deep ocean reservoir, which is transferred to the shelf by 
upwelling and vertical mixing resulting from the shelf break (60, 147,156). This 
flux represents about half the nitrogen required to sustain new production in the 
North Atlantic, the river input accounting for the other half (47). Atmospheric 
deposition (8%) and nitrogen fixation (1%) are negligible. On a global basis, 
Wollast (157) estimated that the contribution of the open ocean represents 80% 
of the nitrogen flux required to sustain new production of the continental shelf, 
an evaluation close to an earlier estimate (147). Riverine input of nitrogen, 
although heavily enhanced by anthropogenic activities, accounts for less than 
15%, and atmospheric deposition and nitrogen fixation constitute about 5% of 
the total required N. 

The behavior and fate of organic matter produced in the water column are 
also very different in the coastal zone and open ocean. First, the number 
of trophic levels decreases markedly with increasing primary production. As 
many as six trophic levels can be identified in oligotrophic waters; there are 
as few as three in upwelling areas (78). In addition, coastal phytoplankton 
is typically dominated by large cells, whereas micro- and picophytoplankton 
dominate in the open ocean (78). Fecal pellets produced by organisms grazing 
small phytoplankton in the open ocean are small and are not exported from 
the photic zone efficiently as a result of low settling velocities (108). Due to 
the large size of fecal pellets (157) and shallow depth of the coastal zone, a 
large fraction of primary production and detrital matter imported by the rivers 
may be deposited and stimulate biological activity in the sediments. Figure IE 
compares total respiration (pelagic plus benthic) to gross primary production 
in various shelf areas. Approximately 30% of the production is respired in 
the water column, and an equivalent amount is mineralized in the sediments. 
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Total respiration is therefore 10 ? 2 mol C m-2 y-' or 214 Tmol C y-1 for the 
global coastal zone, which would make the continental shelf net autotrophic 
with a Pg/R ratio of 1.4 ? 0.3 (Table 1) and a NEP of 171 Tmol C y-' that 
must be exported (157). These observations are in good agreement with the 
high values of new production found for the coastal area (40,72). Although 
coastal sediments accumulate about 90% of detrital organic carbon on a global 
basis, this represents only 3-4% of shelf production. The remaining 36% of 
total production must therefore be exported to the open ocean, re-exporting 
simultaneously particulate organic nutrients, which compensate for the transfer 
of dissolved nutrients from the ocean across the shelf (157). An alternative fate 
may exist for nitrogen if denitrification, which occurs mainly in shelf sediments, 
is significant. This hypothesis has been proposed for the North-Atlantic (102). 
Note that such denitrification must be balanced by an equivalent flux of nitrogen 
fixation in the open ocean to maintain a steady-state condition in the marine 
system. It must be emphasized that temperate shelf ecosystems can be net 
heterotrophic in winter and net autotrophic in summer, when high rates of 
photosynthesis occur (146). 

Eutrophication resulting from the discharge of estuarine nutrient-rich water 
to the coastal sea can induce a wide range of ecological and societal con- 
sequences. For example, a correlation between primary production and the 
supply of inorganic nitrogen from the Mississippi River has been observed in 
the Gulf of Mexico (85). An increasingly large part of the Gulf becomes hy- 
poxic or anoxic in summer, with considerable potential effect on catches in this 
leading US fishery area. In the southern Bight of the North Sea, which is under 
the influence of several macro-tidal and polluted estuaries (Rhine, Scheldt, and 
Thames), pCO2 varies from 100 to 800 g/atm depending on river flow, water 
temperature, and light availability (44). 

SIGNIFICANCE OF COASTAL ECOSYSTEMS 
IN THE GLOBAL OCEANIC CARBON CYCLE 

Metabolic data from coastal ecosystems are summarized in Table 1. The Pg/R 
ratios vary considerably but are, in most cases, not statistically different from 1. 
All coastal ecosystems are net autotrophs (Pg/R > 1; NEP > 0) except estuar- 
ies, which are net heterotrophs exhibiting a negative net ecosystem production 
(-8 Tmol C y-1). These data can be integrated to provide an independent esti- 
mate of coastal metabolism for comparison with estimates obtained by other 
approaches, a method that has several limitations. The sites for which metabolic 
data are available are scarce for some ecosystems (e.g. N = 7 for coral reefs) 
and may not adequately represent the range of metabolic parameters. Average 
areal productions are not weighted averages, so large error can result when 
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they are scaled up to derive global production estimates (see the section on 
macrophyte-dominated ecosystems). Additionally, most NEP data are esti- 
mated as the difference between Pg and R, each of which has an associated 
error. If, for example, these errors are 25% and are independent, Pg and R must 
differ by more than 35% for the NEP to be statistically different from 0 (130). 
Nevertheless, our estimate of Pg (789 Tmol C y-'; i.e. 23% of the global marine 
gross primary production (see Table 1), is of the same order of magnitude as the 
previous estimate of 500 Tmol C y-1 (132, 157). The latter estimate (e.g. 157) 
did not specifically take into account systems such as macrophyte-dominated 
ecosystems and mangroves, which might partly explain the difference. 

Although there is a consensus on the magnitude of Pg, there are differences 
in the estimates of the global coastal NEP. The ecosystem approach provides 
an estimate of 231 Tmol C y-', a value in good agreement with that provided 
by Wollast (200 Tmol C y-l; 157) but much higher than the -7 Tmol C y-' 
proposed by Smith & Hollibaugh (132) or the 12 Tmol C y- given by Rabouille 
(112). Smith & Hollibaugh (132) used a linear relationship between NEP and 

Pg based on 22 nearshore and estuarine sites, as well as the average Pg of 
estuaries and the remaining continental shelves, to predict the NEP of both 
systems. They concluded that estuaries are net heterotrophic (NEP = -7 
Tmol C y-l), that the remaining coastal ocean has a balanced organic carbon 
metabolism (NEP 0), and that the coastal ocean is thus net heterotrophic 
(NEP = -7 Tmol C y-1). They therefore estimated R indirectly at 507 Tmol 
C y-'. Most values of NEP used in the linear regression were obtained as the 
difference between separate estimates of Pg and R, a procedure that induces 
great uncertainty in NEP. Also, most data used to derive the predictive equation 
were from nearshore sites, the outer shelf areas being poorly represented. On 
the other hand, Wollast's estimate of R (and NEP) is based on the observed 
average remineralization rate of Pg (60%; 157) of 500 Tmol C y-1, so R and 
NEP are respectively estimated to be 300 and 200 Tmol C y-l. This approach 
is also limited by the average remineralization rate being calculated from a 
small data set (N = 10) exclusively based on temperate and boreal shelves 
of the northern hemisphere. The continental shelf proper (excluding specific 
ecosystems) is the major contributor to NEP of the coastal zone (75%) followed 
by macrophyte-dominated ecosystems (16%), mangroves (7%), marshes (3%), 
and coral reefs (2.6%). Respiratory processes are poorly known, not only on 
the continental shelves but also in the open ocean (34). 

The coastal ocean contributes more than 40% of marine calcium carbonate 
production (23 vs 53 Tmol CaCO3 y-l; 97). The highest deposition occurs in 
coral reef habitats (9 Tmol y-l, according to Ref. 97, and 6 Tmol y-' according 
to our own estimate), followed by banks and embayments (4 Tmol y-l), carbon- 
ate shelves (6 Tmol y-1), and non-carbonate shelves (4 Tmol y-'). However, 
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Milliman (97) has suggested that a significant fraction (4 Tmol y-l) of the 
calcium carbonate produced on the shelf is exported and deposited on the con- 
tinental slope and rise. This was confirmed by Sabine & Mackenzie (123), who 
observed abundant carbonate skeleton debris, characteristic of shallow water 
organisms, in traps deployed along the Hawaiian slope. 

The delivery of carbon to the coastal ocean has been enhanced by human 
activities and is presently ca. 85 Tmol C y--1 (93). In the marine system, the 
riverine DIC is believed to be partitioned equally between deposition of carbon- 
ate minerals and CO2 evasion to the atmosphere. The organic carbon delivered 
is either oxidized to CO2, accumulated in coastal sediment, or exported to the 
deep open ocean. The importance of these various fates is poorly known and 
is one of the major source of uncertainty in the global carbon cycle. The extent 
of export from the ocean margin has recently been examined using radiocarbon 
(14C) data and a mass balance approach by Bauer & Druffel (9a). Their results 
suggest that inputs of DOC and POC from ocean margins to the deep open 
ocean may be more than an order of magnitude greater than inputs of recently 
produced organic carbon derived from the surface ocean. 

It is increasingly evident that the higher fertility of the coastal ocean compared 
to the open ocean and slope (20 vs 8 mol C m-2 y-'; 11, 146,157) is mainly 
due to the large fluxes of nutrients transferred from the deep ocean to the shelf 
by upwelling or vertical mixing. The recycled production is relatively low, and 
thus the new production related to the large nutrient input must be balanced by 
the export of an equivalent amount of these elements. Walsh (147) and Wollast 
(156) have suggested that a significant fraction of the primary production is 
exported to the open ocean and that the nutrients are re-exported as particulate 
organic matter. However, along the northwest Atlantic coast, only 5% of the 
primary production is exported from the shelf to the adjacent slope (13). Nixon 
et al (102) concluded that only phosphorus, presumably in dissolved form, 
is largely exported to the open ocean, but that most of the nitrogen, mainly 
imported from the open ocean, is lost by denitrification on the shelf. This 
implies a considerable rate of denitrification in the sediments, contrasting with 
a high lability and release of the phosphorus constituents from the bottom to 
the water column. 

Until recently, models of the global carbon cycle did not incorporate the 
coastal ocean, but directly linked ocean and continents. The status of the 
coastal ocean in global models is still a matter of debate because the magnitude 
of the transfer of carbon between the coastal zone and the open ocean is poorly 
constrained. There is no doubt that, in pristine times, the total riverine input of 
organic carbon in the coastal zone was greater than organic carbon preserved 
in shelf sediments. The coastal ocean was net heterotrophic and a source of 
CO2 to the atmosphere (7 Tmol C y-l), assuming little or no transfer of C at 
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the margins (132, 158; Ver et al, submitted). If these transfers are assumed 
to be significant (112; C. Rabouille, personal communication), it was slightly 
autotrophic and a net sink of atmospheric CO2 (20 Tmol C y-l). 

Anthropogenic disturbance has led to an increased delivery of inorganic 
nutrients, organic carbon, and suspended matter into the coastal ocean. The ex- 
cess nutrients may locally enhance planktonic primary production and carbon 
sequestration. Even though the total load of riverine N and P has more than 
doubled with respect to pristine conditions (93), it has not significantly affected 
the productivity of the coastal zone on a global basis. This perturbation is, how- 
ever, responsible for the eutrophication in zones adjacent to polluted estuaries, 
especially in semi-enclosed areas. The increased amount of organic carbon de- 
livered to the coastal zone can be stored in the sediment and/or oxidized to CO2. 
In the latter case, remineralization releases nutrients and promotes primary pro- 
duction. The present rate of sedimentation in the coastal zone is probably twice 
that of preindustrial times because of increased continental erosion resulting 
from deforestation and changes in agricultural practices. This should increase 
the rate of C burial in coastal sediments (155). The balance between increased 
primary production and increased respiration may shift the coastal zone toward 
a more heterotrophic or a more autotrophic state relative to initial conditions 
(158). According to Smith & Hollibaugh (132), the present coastal zone re- 
mains heterotrophic (but a sink for fossil fuel C02). The changes in air-sea CO2 
flux relative to pristine conditions depend on the response of both ocean carbon- 
ate chemistry and atmospheric CO2 to anthropogenic perturbations. Increased 
carbonate precipitation and increased heterotrophy (or decreased autotrophy) 
result in a source of CO2 smaller than the rise of atmospheric pCO2 due to 
anthropogenic activities. The CO2 sink potential of the coastal ocean is there- 
fore diminished. A model that assumes a low rate of C transfer at the margin 
estimates that C02 flux has changed both in direction (from net evasion to net 
invasion) and magnitude (by 6.7 Tmol C y-l) relative to the year 1700 (Ver 
et al, submitted). Finally, Rabouille (112) has suggested that the various human- 
induced modifications of the coastal carbon cycle have resulted in decreased 
autotrophy of the coastal ocean (20 to 11 Tmol C y-l). 

CONCLUSIONS 

Kempe (67) asserted that whether coastal seas are net sinks or sources of C02 for 
the atmosphere cannot be determined. There are currently few carbon budgets 
available for coastal ecosystems. An important research initiative was recently 
launched by the LOICZ program to develop modeling guidelines (54), compile 
150-200 carbon (and nitrogen) budgets for coastal ecosystems in key regions, 
and extend these budgets to a global scale using a functional coastal zone 
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classification system (109). Approximately 30 budgets are available (e.g. 133), 
and it is anticipated that the compilation will be completed in the near future 
(SV Smith, personal communication). 

It is difficult to evaluate the autotrophic/heterotrophic character of the coastal 
zone on the basis of the balance between inputs and outputs because of the very 
limited knowledge of circulation and water exchange between the shelf and the 
open ocean. The net flux of material at this boundary is poorly constrained: it is 
the difference between two huge numbers, both of which are affected by large 
uncertainties. An additional difficulty lies with the extremely non-stationary 
conditions of the coastal zone. Hydrodynamically, river discharge exhibits 
strong seasonal and annual variations, and the shelf is periodically affected by 
storms that resuspend freshly deposited sediments, and favor export to the 
slope area and open ocean. 

The available data suggest that riverine and atmospheric inputs of dissolved 
and particulate carbon represent a negligible fraction of the high primary pro- 
duction of the coastal zone on a global scale. New production on the shelf 
represents at least 50% of primary production and thus only 50% or less is 
respired and recycled (40,72, 146, 155-157). Some of the production that 
is not recycled accumulates in the sediments, but most of the detrital organic 
matter-dissolved or particulate-must be exported to the slope and open ocean. 
Changes in riverine fluxes of organic matter and nutrients or suspended matter 
due to human activities are also small with respect to natural fluxes, and have 
probably affected the global carbon cycle only slightly. 
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