
A full accounting of biomass carbon stocks of trees over 1977-2003 and prediction of forest carbon sequestration by 2050 in China

> Jingyun Fang, Zhaodi Guo, Bing Xu, Shilong Piao Peking University Dec. 16, 2006

Categories of forests and trees

- Forest
 (Stands, economic forests, and bamboo forests)
- Shrubs
- Woodlands
- Trees out forests

(Four-side trees and individual trees)

(1) Forest (Stands, economic forests, and bamboo forests)

Stands: forest with canopy cover of >30% before 1994, after then canopy cover of ≥20% are used.

 Economic forests: woods with the production of fruits, edible oils, drinks, flavorings, industrial raw materials and medicinal materials as the main use.

Tea-oil tree (油茶树林)

 Bamboo forests: the area of bamboo forests is 4.8 Mha, accounting for 2.86 % of forest in China, among which the area of moso bamboo is 3.4 Mha.

(2) Shrubs

Shrubs are defined as the shrubland with coverage of >30%.

(3) Woodlands

Woods of midand old-age classes with canopy cover of 10-19% after 1994 (10-29% before 1994)

Elm tree (榆树林)

(4) Trees out forests (TOFs)

four-side trees and individual trees

four-side trees
 trees bordering
 villages, roads,
 homesteads, and
 ponds or canals

Bordering roads (路旁)

Bordering homesteads (宅旁)

Bordering ponds or canals (水旁)

individual trees

big trees scattered in bamboo forest, economic forest, and non-forest lands, or in young forests

Outlines

- 1. Data sets
- 2. Forest biomass C stocks and changes (Stands, economic forests, and bamboo forests)
- 3. Non-forest biomass C stocks and changes (Shrubs, woodlands, TOFs)
- 4. Prediction of C sink potential
- 5. Key conclusions

1. Data sets

(1) Forest inventories and field biomass dataInventory data:

5 periods: 1977-81, 1984-88, 1989-93, 1994-98, 1999-2003

Field biomass data:

>1000 sets (stand age, stand density, tree height, DBH, stem volume, biomass, etc).

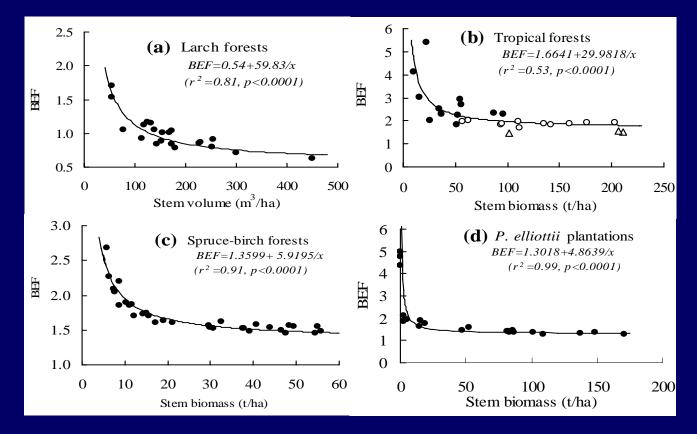
(2) Shrub biomass data

aboveground biomass: 34 sites

Ratio of above- to belowground biomass: 6 types

(3) NDVI datasets

GIMMS NDVI data derived from NOAA/AVHRR land dataset, with 8 km resolution for each 15 days from 1982 to 1999.


(4) Vegetation map with a scale of 1 : 1 million

2. Forest biomass C stocks and changes

2.1 C stocks and changes of stands2.2 C stocks and changes of economic forests and bamboo forests

Stands Variable BEF method

BEF (Biomass expansion factor), the ratio of biomass to timber volume, expressed as a function of stem volume (x), BEF = a + b/x

Variable BEF method

This method can accurately estimate forest biomass by using forest area, stand volume and *BEF*, without using age and site class and other information.

It is easily scaled up from field measurements and inventory data to regional/national biomass estimation.

$$Y = \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{l=1}^{l} A_{ijl} \cdot BEF_{ijl} \cdot x_{ijl}$$
 (Stand level)
$$Y = \sum_{i=1}^{m} A_i \cdot x_i \cdot BEF_i$$
 (Regional level)
$$Y = A \cdot x \cdot BEF$$
 (National level)

Applicability of local measurements to inventorybased estimation of national biomass

Eq. 1 can be rewritten as Eq. 2.

$$BEF = a + \frac{b}{x}$$
 (1); $y = ax + b$ (2)

For direct field measurements, if a given forest type is composed of *n* stands, and their area, mean volume and mean biomass are A_i , x_i , and y_i , then the total biomass (Y_1) can be expressed as:

$$Y_{1} = A_{1}y_{1} + A_{2}y_{2} + \dots + A_{n}y_{n} = A_{1}(ax_{1} + b) + A_{2}(ax_{2} + b) + \dots + A_{n}(ax_{n} + b)$$

= $a\sum_{i=1}^{n} A_{i} \cdot x_{i} + bA$ (3)

On the other hand, in forest inventory, if total forest area and total volume for a given forest type are *A* and *X*, then its mean volume can be estimated as: $x = X / A = (1 / A) \sum_{i=1}^{n} A_{i} \cdot x_{i}$ (4)

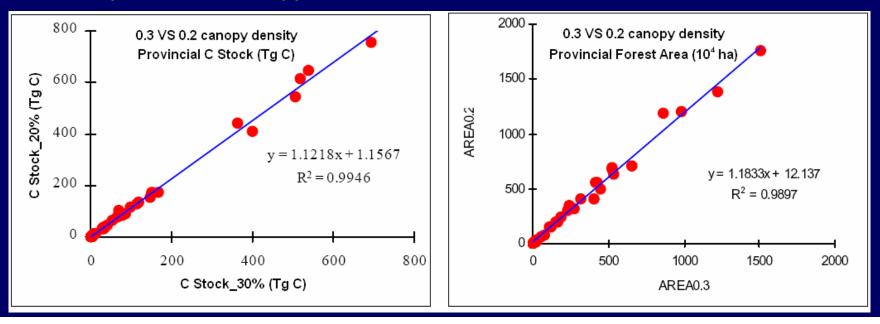
n

The total biomass (Y_2) for this forest type is:

$$Y_{2} = A \cdot y = A(ax + b) = A[a(1/A)\sum_{i=1}^{n} A_{i} \cdot x_{i} + b]$$

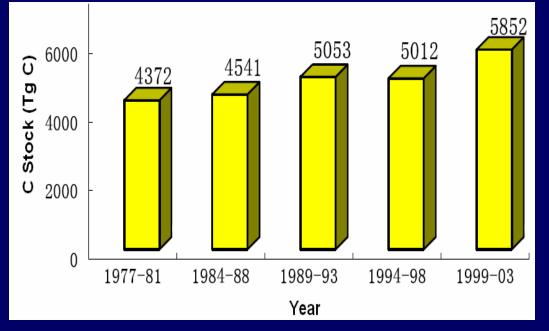
= $a\sum_{i=1}^{n} A_{i} \cdot x_{i} + bA$ (5)

where *A* and *y* are total forest area and mean biomass. Thus, we have: $Y_1 = Y_2$ (6) This is to say, the *BEF* obtained from direct field measurement is applicable to an estimation of regional and national forest biomass.


Biomass and BEF parameters for major forest types in China, BEF = a + b/x

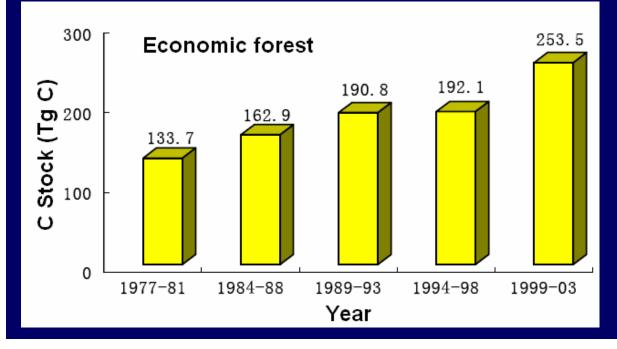
Forest type	а	b	n	r ²
Abies,Picea	0.5519	48.861	24	0.78
Cunninghamia lanceolata	0.4652	19.141	90	0.94
Cypress	0.8893	7.3965	19	0.87
Larix	0.6096	33.806	34	0.82
Pinus koraiensis	0.5723	16.489	22	0.93
P.armandii	0.5856	18.744	9	0.91
P.massoniana, P.yunnanensis	0.5034	20.547	52	0.87
P.sylyestris var.mongolica	1.1120	2.6951	15	0.85
P.tabulaefomis	0.869	9.1212	112	0.91
Other pines and conifer forests	0.5292	25.087	19	0.86
Tsuga,Cryptomeria,Keteleeria	0.3491	39.816	30	0.79
Mixed conifer and deciduous	0.8136	18.466	10	0.99
Betula	1.0687	10.237	9	0.70
Casuarina	0.7441	3.2377	10	0.95
Deciduous oaks	1.1453	8.5473	12	0.98
Eucalyptus	0.8873	4.5539	20	0.80
Lucidophyllous forests	0.9292	6.494	24	0.83
Mixed deciduous and Sassafras	0.9788	5.3764	35	0.93
Nonmerchantable woods	1.1783	2.5585	17	0.95
Populus	0.4969	26.973	13	0.92
Tropical forests	0.7975	0.4204	18	0.87

Uniting forest standards


In China's forest inventory, the "forest" was defined as canopy cover of >30% before 1994, but then it changed to >20%. So, we estimated provincial forest C stocks and forest areas at >20% canopy cover for the periods before 1994 using the relation between provincial C stocks and forest areas at 20% and 30% canopy cover (these two standards of data are available in 1994-99).

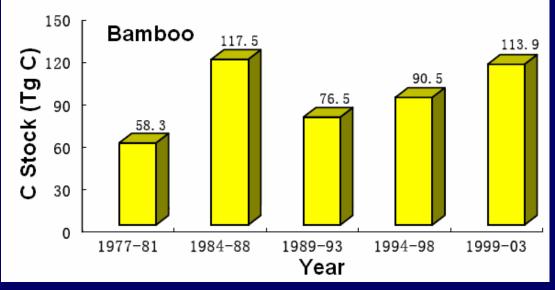
 $TC_{0.2}$ =1.122 $TC_{0.3}$ + 1.157 (R² = 1.00, n =30) AREA_{0.2}=1.183 AREA_{0.3} + 12.137 (R² = 0.99, n =30)

Forest C stocks and changes


Period	Area	С	C Density	C Change
	(10 ⁶ ha)	(Tg C)	(Mg C/ha)	(Tg C/yr)
1977-81	116.6	4372	37.5	
1984-88	124.5	4541	36.5	24
1989-93	132.2	5053	38.2	102
1994-98	129.2	5012	38.8	-8
1999-03	142.8	5852	41.0	168

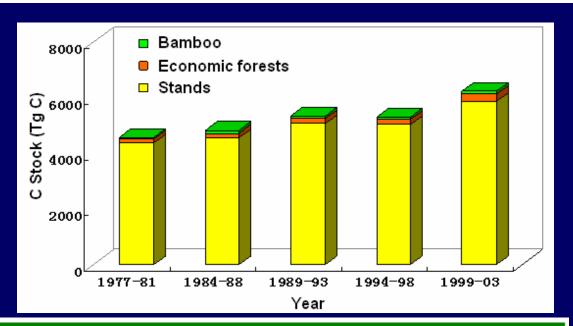
Over 1980-90s, C stocks increased from 4.4 Pg C to 5.9 Pg C, with a net increase of 1.5 Pg C (72 Tg C/yr)

Economic forests


	Period	Area	С	Change
Using a mean		(10 ⁶ ha)	(Tg C)	(Tg C/yr)
biomass of 23.7	1977-81	11.3	133.7	
Mg/ha (Fang et	1984-88	13.7	162.9	4.2
al. 1996)	1989-93	16.1	190.8	5.6
ai. 1550)	1994-98	16.2	192.1	0.3
	1999-03	21.4	253.5	12.3

C stocks increased by 120 Tg C, with an annual increase of 5.5 Tg C

Bamboo forests

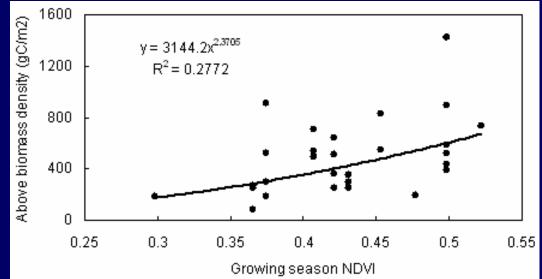

Relationship between stem density (x) and biomass (y) : y=0.0227x+7.9569 (Pan et al. 2004)

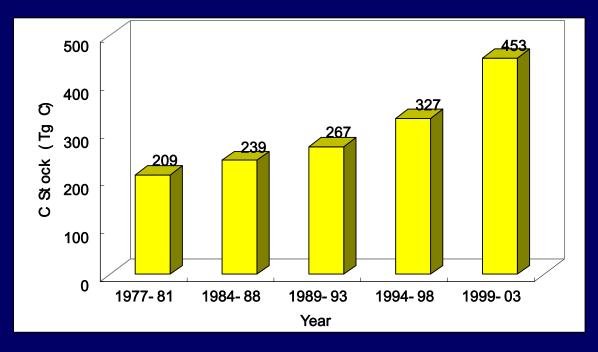
A slight increase (ca. 2TgC/yr)

Period	Area	Density	С	Change
	(10 ⁶ ha)	(stem/ha)	(Tg C)	(Tg C/yr)
1977-81	2.50	1434	58.3	
1984-88	2.53	3255	117.5	8.5
1989-93	2.60	1920	76.5	-8.2
1994-98	2.92	2000	90.5	2.8
1999-03	3.37	2212	113.9	4.7

Summary: C stocks and changes in forests

Period	St	ands	Economic forests		s Ba	Bamboo		Total	
Fenou	С	Change	С	Change	С	Change	С	Change	
	(Tg C)	(Tg C/yr)	(Tg C)	(Tg C/yr)	(Tg C)	(Tg C/yr)	(Tg C)	(Tg C/yr)	
1977-81	4372		134		58		4564		
1984-88	4541	24.1	163	4.2	117	8.5	4821	36.8	
1989-93	5053	102.4	191	5.6	77	-8.2	5320	99.8	
1994-98	5012	-8.2	192	0.3	90	2.8	5295	-5.1	
1999-03	5852	168.0	253	12.3	114	4.7	6219	185.0	

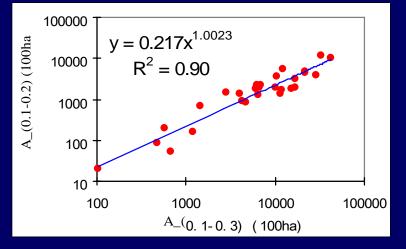

Net meanC sink is 79 TgC/yr.

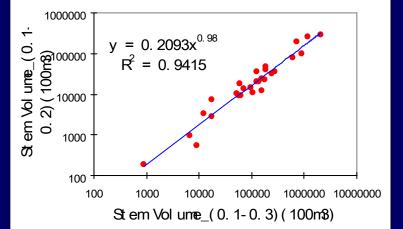

3. Non-forest biomass C stocks and changes

3.1 Shrubs
3.2 woodlands
3.3 TOFs (four-side trees and individual trees)

3.1 Shrubs

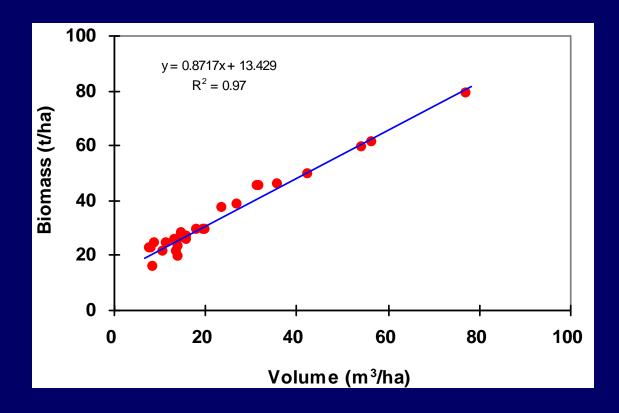
We estimate biomass C of shrubs using relationship between aboveground biomass and seasonal NDVI at 34 shrub sites.

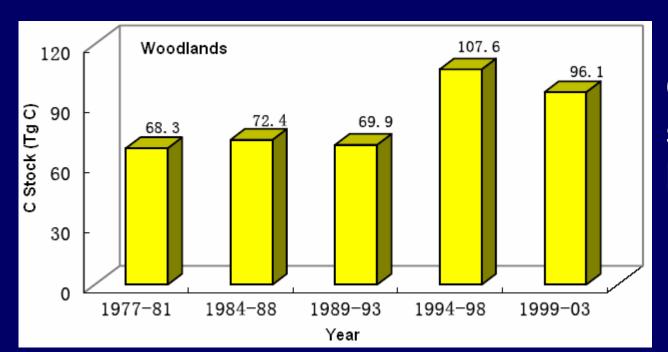



During the last 2 decades, C stock in shrubs has increased by 244 Tg C.

3.2 Woodlands

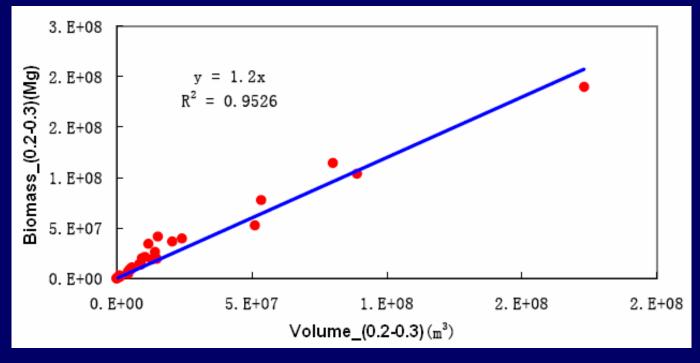
we first establish relation between provincial stem volume and areas of woodlands at 10-20% and 10-30% canopy covers (these data are available in 1994-99), then estimate provincial forest C stocks and forest areas at 10-20% canopy cover for periods before 1994.


 $A_{0.1-0.2} = 0.217(A_{0.1-0.3})^{1.0023}, R^2 = 0.90$ $V_{0.1-0.2} = 0.2093(V_{0.1-0.3})^{0.98}, R^2 = 0.94$

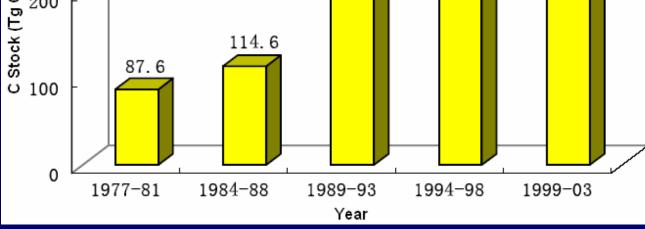


Relation between provincial shrub area at 10-20% and 10-30% canopy densities Relation between provincial stem volume at 10-20% and 10-30% canopy densities

Relationship between provincial biomass and stem volume: y = 0.8717x+13.429 (n=30, R² = 0.97)

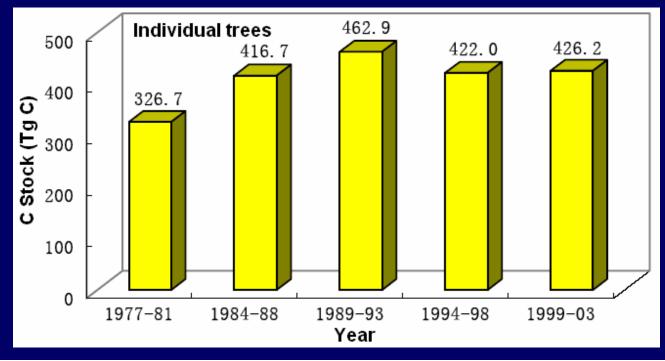

C stocks had a small increase by 1.2 Tg C/yr.

Period	Area	С	Change
	(10 ⁶ ha)	(Tg C)	(Tg C/yr)
1977-1981	4.03	68.3	
1984-1988	4.60	72.4	0.6
1989-1993	4.23	69.9	-0.5
1994-1998	7.20	107.6	7.6
1999-2003	6.00	96.1	-2.3

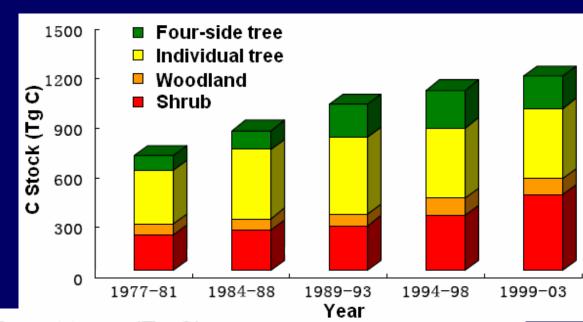

3.3 Trees out forests (TOFs) (four-side trees and individual trees)

Relationship between provincial total biomass (y, Mg) and total stem volume (x, m³) at coarse stands (20-30%canopy cover):

y = 1.2 x (n=30, R² = 0.95)



Four-side trees		S		Volume	С	Change
			Period	10 ⁶ m ³	Tg C	Tg C/yr
		1	977-81	146.1	87.6	
		1	984-88	191.0	114.6	3.9
		1	989-93	332.1	199.3	16.9
		1	994-98	381.3	228.8	5.9
		1	999-03	323.2	193.9	-7.0
\square						
300	Four-side trees		228.8			
		199. 3		193. 9	C stoc	k is
בא 200 - בא (Ja C) בא					quite l	big and
<u>, к</u>	114.6				had a	moan

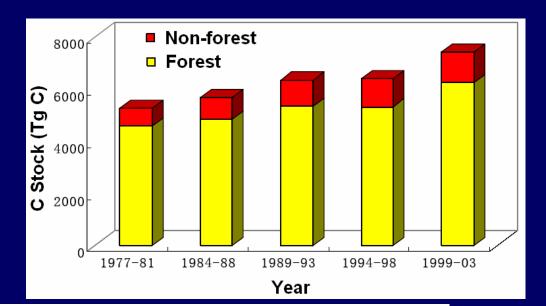

C stock is quite big and had a mean increase of 5 Tg C/yr.

Period	Volume	С	Change
	10 ⁶ m ³	Tg C	Tg C/yr
1977-81	544.5	326.7	
1 9 84-88	694.5	416.7	12.9
198 9-9 3	771.4	462.9	9.2
1 994-9 8	703.4	422.0	-8.2
1999-03	710.3	426.2	0.8
	1977-81 1984-88 1989-93 1994-98	106 m³1977-81544.51984-88694.51989-93771.41994-98703.4	106 m3Tg C1977-81544.5326.71984-88694.5416.71989-93771.4462.91994-98703.4422.0

C stock is quite big and had a mean increase of 3.7 Tg C/yr. **Summary:**

C stocks and changes in nonforest trees

Carbon stocks in non-forest trees (Tg C)


Period	Shrub	Woodland Individual	Four-side	Non forest
--------	-------	---------------------	-----------	------------

			tree	tree	
1977-81	209	68	327	88	692
1984-88	239	72	417	115	843
1989-93	267	70	463	199	999
1994-98	327	108	422	229	1086
1999-03	453	96	426	194	1169

C stock increases from 0.7 PgC to 1.2 PgC over the years

Summary:

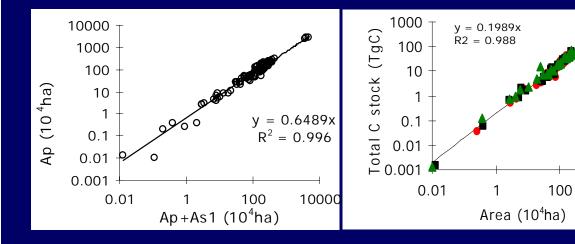
C stocks and changes in all trees

Period	Fo	Forest Non-forest		Total		
i enou	С	Change	С	Change	C C	Change
	(Tg C)	(Tg C/yr)	(Tg C)	(Tg C/yr) (Tg C)	(Tg C/yr)
1977-81	4564		692		5256	
1984-88	4821	36.8	843	22	5664	58
1989-93	5320	99.8	999	31	6319	131
1994-98	5295	-5.1	1086	17	6381	12
1999-03	6219	185	1169	17	7388	202

C stock increases from 5.3 PgC to 7.4 PgC, with a net increase of 2.1 PgC.

4. Prediction of C sink potential

Prediction based on area change


Plan of afforestation and reforestation in China (2002)

Period	Coverage (%)	Total area (10 ⁶ ha)
2003	17.6	16901.9
2010	20.4	19568.4
2020	23.5	22528.9
2030	25.5	24503.3
2050	28.4	27226.6
Net increase	10.8	10324.7

Relationships between forest variables at provincial level

i: Planted forests

ii: Planted forests

Ap: area of planted forests

An: Area of natural forests

As1: area of planted economic and bamboo forests

Cp: Total C stock of planted forests

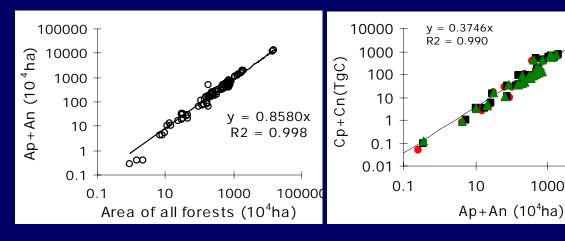
Cn: Total C stock of natural forests

iv: Planted & natural forests

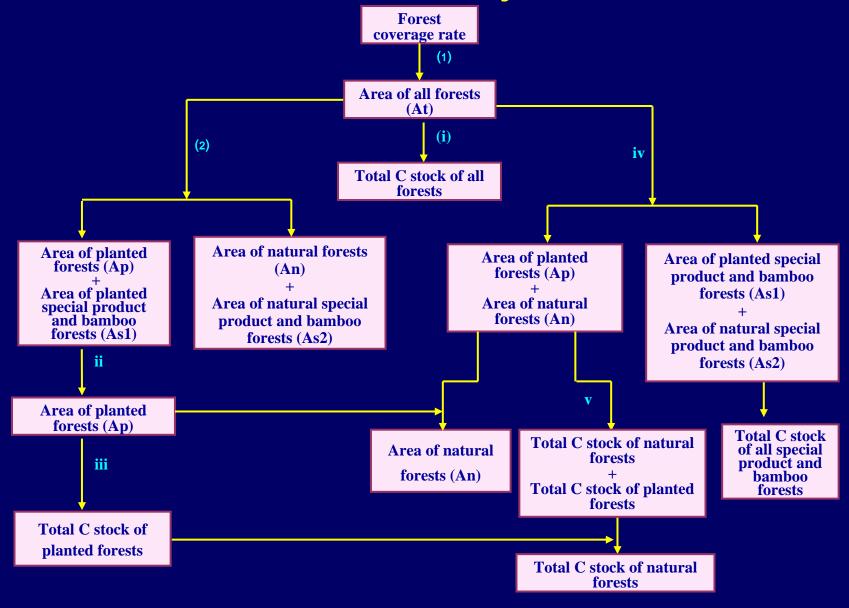
84-88

■ 89-93

▲ 94 - 98

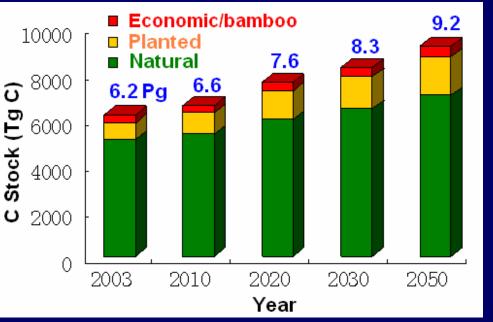

10000

84-88


■ 89-93

▲ 94-98

100000

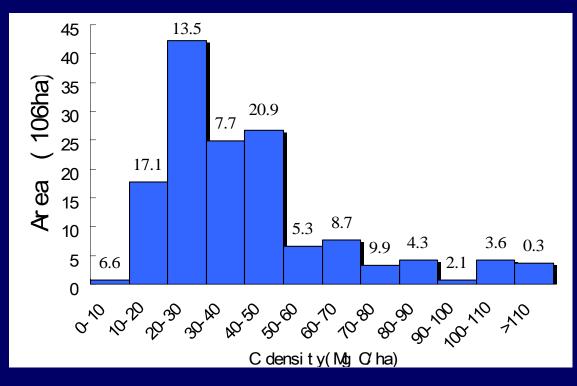

Flow chart for calculating forest area and C stocks from planned forest coverage using allometric relationships between forest variables derived from forest inventory data

Total area and total C of existing (2003) and planned forests in China (2010-2050)

Period	All forests		Natural forests		Planted forests		Economic/ bamboo forests	
	Total area	Total C	Total area	Total C	Total area	Total C	Total area	Total C
2003	16902	6189	11049	5099	3229	753	2623	337
2010	19568	6612	12036	5344	4754	945	2779	323
2020	22529	7612	13135	6009	6194	1232	3199	372
2030	24503	8280	13869	6452	7155	1423	3479	404
2050	27227	9200	14880	7064	8481	1687	3866	449

Forest C stock in 2050 increases from 6.2 PgC in 2003 to 9.2 Pg C in 2050, increasing by ~50%, with a mean increasing of 0.065 Pg C/yr.

5. Key conclusion


 Over the past 2 decades, total C stocks of China's trees have increased by 2.13 PgC, of which C stock of forests increased by 1.65PgC, and that of non-forest trees by 0.48 PgC.

 Non-forest trees are important C stocks, being about 15-19% of total forest C stocks.

 China has a large potential for C sinks by forests: in the future 30-40 yrs, forests can absorb additional 3 PgC at a scenario of current forestry plan. Thank you!

4.1 Prediction based on carbon density

Forest area frequency of C density for 1999-2003

Assume: mean C density of China's forests to be 50 t C/ha. If the 78.7% of China's forests with lower C density grow to the assumed level, then the forests could absorb an additional carbon of 2.22 Pg.