Ecological Economics: Creating a Sustainable and Desirable Future

Robert Costanza

Gordon Gund Professor of Ecological Economics and Director, Gund Institute of Ecological Economics Rubenstein School of Environment and Natural Resources University of Vermont Burlington, VT 05401

http://www.uvm.edu/giee

Gund Institute for Ecological Economics, University of Vermont

Practical Problem Solving Requires the *Integration* of:

Vision a. How the world works b. How we would like the world to be Tools and Analysis appropriate to the vision Implementation appropriate to the vision

Gund Institute for Ecological Economics, University of Vermont

World Primary Energy Supply by Source, 1850-1997

Anthroposphere

QuickTime[™] and a Cinepak decompressor are needed to see this picture.

> Marc Imhoff Biospheric Sciences Branch NASA

Empty World Energy Planning?

The Challenge: Sustainable Management of an Ever-Changing Planet

OIL AND GAS LIQUIDS 2004 Scenario Updated by Colin J. Campbell, 2004-05-15

OIL AND GAS LIQUIDS 2004 Scenario

With A, B, and C all converted to energy of the same quality:

Energy Return on Investment (EROI) = A/B Net Energy = A - B Energy Capture Efficiency = A/(B+C) Energy Payback Time = time for flow of A to equal lump sum of B

Atmosphere

QuickTime[™] and a decompressor are needed to see this picture.

BE WORRIED. BEVERY WORRIED.

www.time.com AOL Keyword: TIME

SPECIAL REPORT GLOBAL WARMING

APRIL 3, 2006

Climate change isn't some vague future problem—it's already damaging the planet at an alarming pace. Here's how it affects you, your kids and their kids as well

EARTH AT THE TIPPING POINT HOW IT THREATENS YOUR HEALTH HOW CHINA & INDIA CAN HELP SAVE THE WORLD—OR DESTROY IT THE CLIMATE CRUSADERS

Weather-related economic damages have increased

Hurricane Katrina approaching Louisiana coast

Ecological Economics

oikos = "house" *logy* = "study or knowledge" *nomics* = "management"

Literally: management of the house (earth) based on study and knowledge of same

Integrated Questions/Goals:

- Ecologically Sustainable Scale
- Socially Fair **Distribution**
- Economically Efficient Allocation

Methods:

- Transdisciplinary **Dialogue**
- **Problem** (rather than tools) **Focus**
- Integrated Science (balanced synthesis & analysis)
- Effective and adaptive Institutions

See: Costanza, R., J. C. Cumberland, H. E. Daly, R. Goodland, and R. Norgaard. 1997. An Introduction to Ecological Economics. St. Lucie Press, Boca Raton, 275 pp.

Gund Institute for Ecological Economics, University of Vermont

"Empty World" Model of the Economy

"Full World" Model of the Ecological Economic System

From: Costanza, R., J. C. Cumberland, H. E. Daly, R. Goodland, and R. Norgaard. 1997. An Introduction to Ecological Economics. St. Lucie Press, Boca Raton, 275 pp.

Beyond the Confrontational Debate on the Environment

ILLUSTRATION 1:

HUMANITY'S TOTAL FOOTPRINT 1961-2000

More realistic vision of human behavior

- Multiple motivations (personality types, culture, etc.)
- Limited knowledge and "rationality"
- Evolving preferences
- Satisfaction based on relative, rather than absolute, consumption, plus a host of "non-consumption" factors
- Central role of emotions in decisionmaking and evading social traps
- Embedded in multiscale, complex, adaptive, systems

Gund Institute for Ecological Economics, University of Vermont

Phineas Gage

We devote a huge chunk of our brains to recognizing faces and reading other people's emotions and intentions. This is essential to allow social capital to form and to build rules and norms that can avoid free rider problems and other social traps.

Quality of Life (QOL) as the interaction of human needs and the subjective perception of their fulfillment, as mediated by the opportunities available to meet the needs.

From: Costanza, R., B. Fisher, S. Ali, C. Beer, L. Bond, R. Boumans, N. L. Danigelis, J. Dickinson, C. Elliott, J. Farley, D. E. Gayer, L. MacDonald Glenn, T. Hudspeth, D. Mahoney, L. McCahill, B. McIntosh, B. Reed, S. A. T. Rizvi, D. M. Rizzo, T. Simpatico, and R. Snapp. 2006. Quality of Life: An Approach Integrating Opportunities, Human Needs, and Subjective Well-Being. *Ecological Economics* (in press).

Observed Life Satisfaction versus Predicted Life Satisfaction

Predicted Life Satisfaction (LS)

From: Vemuri, A. W. and R. Costanza. 2006. The Role of Human, Social, Built, and Natural Capital in Explaining Life Satisfaction at the Country Level: Toward a National Well-Being Index (NWI). *Ecological Economics* (in press).

From: Mulder, K., R. Costanza, and J. Erickson. 2006 The contribution of built, human, social and natural capital to quality of life in intentional and unintentional communities. *Ecological Economics* (in press)

Cool	Economic	Economic Welfare	Human
Goal	Income Marketed Weak Strong Sustainability Sustainability		Welfare
Basic Framework	value of 1 + non-2 + preserve marketed goods marketed goods essential natural and services and services capital produced and consumption consumed in an economy	value of the wefare effects of income and other factors (including distribution, household work, loss of natural capital etc.)	assessment of the degree to which human needs are fulfilled
Non- environmentally adjusted measures	GNP (Gross National Product) GDP (Gross Domestic Product) NNP (Net National Product)	MEW (Measure of Economic Welfare)	HDI (Human Development Index)
Environmentally adjusted measures	NNP' (Net National Product including non- produced assetts) (Environmental Net National Product) (Sustainable National Income)	ISEW (Index of Sustainable Economic Welfare)	HNA (Human Needs Assessment)
	SEEASEEA(System of Environmental Economic Accounts)(System of Environmental Economic Accounts)		
Appropriate Valuation Methods	Market values 1 + Willingness 2 + Replacemen to Pay Based Costs,+ Values (see Production Table 2) Values	t 3 + Constructed Preferences	4 + Consensus Building Dialogue

A range of goals for national accounting and their corresponding frameworks, measures, and valuation methods

From: Costanza, R., S. Farber, B. Castaneda and M. Grasso. 2001. Green national accounting: goals and methods. Pp. 262-282 in: Cleveland, C. J., D. I. Stern and R. Costanza (eds.) The economics of nature and the nature of economics. Edward Elgar Publishing, Cheltenham, England

The gross national product does not allow for the health of our children, the quality of their education, or the joy of their play. It does not include the beauty of our poetry or the strength of our marriages; the intelligence of our public debate or the integrity of our public officials. It measures neither our wit nor our courage; neither our wisdom nor our learning; neither our compassion nor our devotion to our country; it measures everything, in short, except that which makes life worthwhile.

Robert F. Kennedy, 1968

Some would blame our current problems on an organized conspiracy. I wish it were so simple. Members of a conspiracy can be rooted out and brought to justice. This system, however, is fueled by something far more dangerous than conspiracy. It is driven not by a small band of men but by a concept that has become accepted as gospel: the idea that all economic growth benefits humankind and that the greater the growth, the more widespread the benefits.

John Perkins, Confessions of an Economic Hit Man, 2004

GDP measures marketed economic activity, not welfare
ISEW (Index of Sustainable Economic Welfare) or
GPI (Genuine Progress Indicator) are intended to be better approximations to
economic welfare, since they adjust for:
Income distribution
Value of Social Capital
Value of Natural Capital
Value of Non-Marketed Household Work
and other things...

ISEW (or GPI) by Column

Column A: Personal Consumption Expenditures Column B: Income Distribution Column C: Personal Consumption Adjusted for Income Inequality Column D: Value of Household Labor Column E: Value of Volunteer Work Column F: Services of Household Capital Column G: Services Highways and Street Column H: Cost of Crime Column I: Cost of Family Breakdown Column J: Loss of Leisure Time Column K: Cost of Underemployment Column L: Cost of Consumer Durables Column M: Cost of Commuting Column N: Cost of Household Pollution Abatement Column O: Cost of Automobile Accidents Column P: Cost of Water Pollution Column Q: Cost of Air Pollution Column R: Cost of Noise Pollution Column S: Loss of Wetlands Column T: Loss of Farmland Column U: Depletion of Nonrenewable Resources Column V: Long-Term Environmental Damage Column W: Cost of Ozone Depletion Column X: Loss of Forest Cover Column Y: Net Capital Investment Column Z: Net Foreign Lending and Borrowing

Gross Production vs. Genuine Progress for the US, 1950 to 2002 (source: Redefining Progress - http://www.rprogress.org)

Genuine Progress Indicator (GPI) per capita

From: Costanza, R. J. Erickson, K. Fligger, A. Adams, C. Adams, B. Altschuler, S. Balter, B. Fisher, J. Hike, J. Kelly, T. Kerr, M. McCauley, K. Montone, M. Rauch, K. Schmiedeskamp, D. Saxton, L. Sparacino, W. Tusinski, and L. Williams. 2004. Estimates of the Genuine Progress Indicator (GPI) for Vermont, Chittenden County, and Burlington, from 1950 to 2000. *Ecological Economics* 51: 139-155

ECOSYSTEM SERVICES	ECOSYSTEM FUNCTIONS	
Gas regulation	Regulation of atmospheric chemical composition.	
Climate regulation	Regulation of global temperature, precipitation, and other biologically mediated climatic processes at global, regional, or local levels. Capacitance, damping and integrity of ecosystem response to environmental	
Disturbance regulation		
Water regulation	Regulation of hydrological flows.	
Water supply	Storage and retention of water.	
Erosion control and sediment retention	Retention of soil within an ecosystem.	
Soil formation	Soil formation processes.	
Nutrient cycling	Storage, internal cycling, processing, and acquisition of nutrients.	
Waste treatment	Recovery of mobile nutrients and removal or breakdown of excess or	
Pollination	Movement of floral gametes.	
Biological control	Trophic-dynamic regulations of populations.	
Refugia	Habitat for resident and transient populations.	
Food production	That portion of gross primary production extractable as food.	
Raw materials	That portion of gross primary production extractable as raw materials.	
Genetic resources	Sources of unique biological materials and products.	
Recreation	Providing opportunities for recreational activities.	
Cultural	Providing opportunities for non-commercial uses.	

From: Costanza, R. R. d'Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, S. Naeem, K. Limburg, J. Paruelo, R.V. O'Neill, R. Raskin, P. Sutton, and M. van den Belt. 1997. The value of the world's ecosystem services and natural capital. *Nature* 387:253-260
Focus: Consequences of Ecosystem Change for Human Well-being

CONSTITUENTS OF WELL-BEING

Table 1. Ecosystem functions and services.							
Ecosystem functions and services	Description	Examples					
Supportive functions and structures	Ecological structures and functions that are essential to the delivery of ecosystem services	See below					
Nutrient cycling	Storage, processing, and acquisition of nutrients within the biosphere	Nitrogen cycle; phosphorus cycle					
Net primary production	Conversion of sunlight into biomass	Plant growth					
Pollination and seed dispersal	Movement of plant genes	Insect pollination; seed dispersal by animals					
Habitat	The physical place where organisms reside	Refugium for resident and migratory species; spawning and nursery grounds					
Hydrological cycle	Movement and storage of water through the biosphere	Evapotransporation; stream runoff; groundwater retention					
Regulating services	Maintenance of essential ecological processes and life support systems for human well-being	See below					
Gas regulation	Regulation of the chemical composition of the atmosphere and oceans	Biotic sequestration of carbon dioxide and release of oxygen; vegetative absorption of volatile organic compounds					
Climate regulation	Regulation of local to global climate processes	Direct influence of land cover on temperature, precipita- tion, wind, and humidity					
Disturbance regulation	Dampening of environmental fluctuations and disturbance	Storm surge protection; flood protection					
Biological regulation	Species interactions	Control of pests and diseases; reduction of herbivory (crop damage)					
Water regulation	Flow of water across the planet surface	Modulation of the drought-flood cycle; purification of water					
Soil retention	Erosion control and sediment retention	Prevention of soil loss by wind and runoff; avoiding buildup of silt in lakes and wetlands					
Waste regulation	Removal or breakdown of nonnutrient compounds and materials	Pollution detoxification; abatement of noise pollution					
Nutrient regulation	Maintenance of major nutrients within acceptable bounds	Prevention of premature eutrophication in lakes; maintenance of soil fertility					
Provisioning services	Provisioning of natural resources and raw materials	See below					
Water supply	Filtering, retention, and storage of fresh water	Provision of fresh water for drinking; medium for trans- portation; irrigation					
Food	Provisioning of edible plants and animals for human consumption	Hunting and gathering of fish, game, fruits, and other edible animals and plants; small-scale subsistence farming and aquaculture					
Raw materials	Building and manufacturing Fuel and energy Soil and fertilizer	Lumber; skins; plant fibers; oils; dyes Fuelwood; organic matter (e.g., peat) Topsoil; frill; leaves; litter; excrement					
Genetic resources	Genetic resources	Genes to improve crop resistance to pathogens and pests and other commercial applications					
Medicinal resources	Biological and chemical substances for use in drugs and pharmaceuticals	Quinine; Pacific yew; echinacea					
Ornamental resources	Resources for fashion, handicraft, jewelry, pets, worship, decoration, and souvenirs	Feathers used in decorative costumes; shells used as jewelry					
Cultural services	Enhancing emotional, psychological, and cognitive well-being	See below					
Recreation	Opportunities for rest, refreshment, and recreation	Ecotourism: bird-watching: outdoor sports					
Aesthetic	Sensory enjoyment of functioning ecological systems	Proximity of houses to scenery; open space					
Science and education	Use of natural areas for scientific and educational enhancement	A "natural field laboratory" and reference area					
Spiritual and historic	Spiritual or historic information	Use of nature as national symbols; natural landscapes with significant religious values					

From: Farber, S., R. Costanza, D. L. Childers, J. Erickson, K. Gross, M. Grove, C. S. Hopkinson, J. Kahn, S. Pincetl, A. Troy, P. Warren, and M. Wilson. 2006 Linking Ecology and Economics for Ecosystem Management: A Services-Based Approach with Illustrations from LTER Sites. *BioScience* 56:117-129.

Ecosystem Services and Land Cover Types

Biosphere

QuickTime[™] and a decompressor are needed to see this picture.

Sea-viewing Wide Field-of-View Sensor (SeaWiFS) data on marine and terrestrial plant productivity

Valuation of ecosystem services based on the three primary goals of efficiency, fairness, and sustainability.

Goal or Value Basis	Who votes	Preference Basis Required	Level of Discussion Required	Level of Scientific Input	Specific Methods
Efficiency	Homo economius	Current individual preferences	low	low	willingness to pay
Fairness	Homo communicus	Community preferences	high	medium	veil of ignorance
Sustainability	Homo naturalis	Whole system preferences	medium	high	modeling with precaution

from: **Costanza, R. and C. Folke. 1997**. Valuing ecosystem services with efficiency, fairness and sustainability as goals. pp: 49-70 in: G. Daily (ed.), Nature's Services: Societal Dependence on Natural Ecosystems. Island Press, Washington, DC, 392 pp.

Example Valuation Techniques

•Avoided Cost (AC): services allow society to avoid costs that would have been incurred in the absence of those services; flood control provided by barrier islands avoids property damages along the coast.

•**Replacement Cost** (RC): services could be replaced with man-made systems; nutrient cycling waste treatment can be replaced with costly treatment systems.

•Factor Income (FI): services provide for the enhancement of incomes; water quality improvements increase commercial fisheries catch and incomes of fishermen.

•**Travel Cost** (TC): service demand may require travel, whose costs can reflect the implied value of the service; recreation areas attract distant visitors whose value placed on that area must be at least what they were willing to pay to travel to it.

• **Hedonic Pricing** (HP): service demand may be reflected in the prices people will pay for associated goods: For example, housing prices along the coastline tend to exceed the prices of inland homes.

•Marginal Product Estimation (MP): Service demand is generated in a dynamic modeling environment using production function (i.e., Cobb-Douglas) to estimate value of output in response to corresponding material input.

•Contingent Valuation (CV): service demand may be elicited by posing hypothetical scenarios that involve some valuation of alternatives; people would be willing to pay for increased preservation of beaches and shoreline.

•Group Valuation (GV): This approach is based on principles of deliberative democracy and the assumption that public decision making should result, not from the aggregation of separately measured individual preferences, but from *open public debate*.

Hurricane Katrina approaching Louisiana coast

Picture taken by an automatic camera located at an electrical generating facility on the Gulf Intracoastal Waterway (GIWW) where the Route I-510 bridge crosses the GIWW. This is close to where the Mississippi River Gulf Outlet (MRGO) enters the GIWW. The shot clearly shows the storm surge, estimated to be 18-20 ft. in height...

History of coastal Louisiana wetland gain and loss over the last 6000 years, showing historical net rates of gain of approximately 3 km²/year over the period from 6000 years ago until about 100 years ago, followed by a net loss of approximately 65 km²/yr since then.

Figure 1. Typical hurricane swath showing GDP and wetland area used in the analysis.

The value of coastal wetlands for hurricane protection

 $\ln \left(TD_i / GDP_i \right) = \alpha + \beta_1 \ln(g_i) + \beta_2 \ln(w_i) + u_i$ (1)

Where:

 $TD_i = total damages from storm i (in constant 2004 $U S);$

GDP_i = Gross Domestic Product in the swath of storm i (in constant 2004 \$U S). The swath was considered to be 100 km wide by 100 km inland.

- $g_i = maximum \text{ wind speed of storm i (in m/sec)}$
- w_i = area of herbaceous wetlands in the storm swath (in ha).

 $u_i = error$

Predicted total damages from storm *i*

$$TD_i = e^{\alpha} * g_i^{\beta_1} * w_i^{\beta_2} * GDP_i$$

Avoided cost from a change of 1 ha of coastal wetlands for storm i

$$\Delta TD_{i} = e^{\alpha} * g_{i}^{\beta_{1}} * ((w_{i} - 1)^{\beta_{2}} - w_{i}^{\beta_{2}}) * GDP_{i}$$

Figure 2. Observed vs. predicted relative damages (TD/GDP) for each of the hurricanes used in the analysis.

Figure 3. Area of coastal wetlands (A) in the average hurricane swath vs. the estimated marginal value per ha (MV_{sw}) and (B) in the entire state vs. the total value (TV_s) of coastal wetlands for storm protection

nature

Protein unfolding The source of muscle elasticity Callisto An undifferentiated satellite Ocean productivity Nitrogen, the ultimate nutrient?

Laboratory equipment

This is the 2nd most cited article in the last 10 years in the Ecology/Environment area according to the ISI Web of Science. NATURE |VOL 387 | 15 MAY 1997 253

The value of the world's ecosystem services and natural capital

Robert Costanza*†, Ralph d'Arge‡, Rudolf de Groot§, Stephen Farberk, Monica Grasso†, Bruce Hannon¶, Karin Limburg#ı, Shahid Naeem**, Robert V. O'Neill††, Jose Paruelo‡‡, Robert G. Raskin§§, Paul Suttonkk & Marjan van den Belt¶¶

* Center for Environmental and Estuarine Studies, Zoology Department, and † Insitute for Ecological Economics, University of Maryland, Box 38, Solomons,

Maryland 20688, USA

‡ Economics Department (emeritus), University of Wyoming, Laramie, Wyoming 82070, USA

§ Center for Environment and Climate Studies, Wageningen Agricultural University, PO Box 9101, 6700 HB Wageninengen, The Netherlands

kGraduate School of Public and International Affairs, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

¶ Geography Department and NCSA, University of Illinois, Urbana, Illinois 61801, USA

Institute of Ecosystem Studies, Millbrook, New York, USA

** Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, Minnesota 55108, USA

tt Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

^{‡‡} Department of Ecology, Faculty of Agronomy, University of Buenos Aires, Av. San Martin 4453, 1417 Buenos Aires, Argentina §§ Jet Propulsion Laboratory, Pasadena, California 91109, USA

kkNational Center for Geographic Information and Analysis, Department of Geography, University of California at Santa Barbara, Santa Barbara, California 93106,

USA

Il Ecological Economics Research and Applications Inc., PO Box 1589, Solomons, Maryland 20688, USA

The services of ecological systems and the natural capital stocksthat produce them are critical to the functioning of the Earth's life-support system. They contribute to human welfare, both directly and indirectly, and therefore represent part of the total economic value of the planet. We have estimated the current economic value of 17 ecosystem services for 16 biomes, based on published studies and a few original calculations. For the entire biosphere, the value (most of which is outside the market) is estimated to be in the range of US\$16–54 trillion (10₁₂) per year, with an average of US\$33trillion per year. Because of the nature of the uncertainties, thismust be considered a minimum estimate. Global gross national product total is around US\$18 trillion per year.

Summary of global values of annual ecosystem services (From: Costanza et al. 1997)

Biome	Area (e6 ha)	Value per ha (\$/ha/yr)	Global Flow Value (e12 \$/yr)
Marine Open Ocean Coastal Estuaries Seagrass/Algae Beds Coral Reefs Shelf	36,302 33,200 3,102 180 200 62 2,660	577 252 4052 22832 19004 6075 1610	20.9 8.4 12.6 4.1 3.8 0.3 4.3
Terrestrial Forest Tropical Temperate/Boreal Grass/Rangelands Wetlands Tidal Marsh/Mangroves Swamps/Floodplains Lakes/Rivers Desert Tundra Ice/Rock Cropland Urban	15,323 4,855 1,900 2,955 3,898 330 165 165 200 1,925 743 1,640 1,400 332	804 969 2007 302 232 14785 9990 19580 8498	12.3 4.7 3.8 0.9 0.9 4.9 1.6 3.2 1.7
Total	51,625		33.3

Problems with the *Nature* **paper** (as listed in the paper itself)

- **1.** Incomplete (not all biomes studied well some not at all)
- 2. Distortions in current prices are carried through the analysis
- **3.** Most estimates based on current willingness-to-pay or proxies
- 4. Probably underestimates changes in supply and demand curves as ecoservices become more limiting
- 5. Assumes smooth responses (no thresholds or discontinuties)
- 6. Assumes spatial homogeneity of services within biomes
- 7. Partial equilibrium framework
- 8. Not necessarily based on sustainable use levels
- 9. Does not fully include "infrastructure" value of ecosystems
- 10. Difficulties and imprecision of making inter-country comparisons
- **11.** Discounting (for the few cases where we needed to convert from stock to flow values)
- 12. Static snapshot; no dynamic interactions

Solving any of these problems (except perhaps 6 which could go either way) will lead to larger values

Linkages Between Biodiversity and the Value of Ecosystem Services

Figure 2: Global Map of Marketed Economic Activity as measured by Nighttime Satellite Image proxy

From: Sutton, P. C. and R. Costanza. 2002. Global estimates of market and non-market values derived from nighttime satellite imagery, land use, and ecosystem service valuation. *Ecological Economics* 41: 509-527

Figure 3: Global Map of Non-Marketed Economic Activity (ESP) arising from Ecosystem Services and derived from Land Cover at 1 km² (For National Totals See Table 1)

Work in **Progress: Valuation of New** Jersey's Natural **Capital and** Ecosystem **Services** Contract # SR04-075 **New Jersey Department** of Environmental **Protection**

Figure 4: Subtotal Ecological-Economic Product (SEP = GDP + ESP) at 1 km2 resolution (w/ inset Boston -DC)

Figure 5: Aggregated National Map (choropleth) of ESP (Ecosystem Service Product)

Figure 6: Aggregated National Map (choropleth) of SEP (Subtotal Ecological-Economic Product)

Figure 7: Agrregated National Map (choropleth) of SEP/ Capita

Degradation of ecosystem services often causes significant harm to human well-being

- The total economic value associated with managing ecosystems more sustainably is often higher than the value associated with conversion
- Conversion may still occur because private economic benefits are often greater for the converted system

Economic Reasons for Conserving Wild Nature

Costs of expanding and maintaining the current global reserve network to one covering 15% of the terrestrial biosphere and 30% of the marine biosphere

Benefits (Net value* of ecosystem services from the global reserve network)

*Net value is the difference between the value of services in a "wild" state and the value in the most likely human-dominated alternative = \$US 4,400-5,200 Billion/yr

Benefit/Cost Ratio = 100:1

(**From:** Balmford, A., A. Bruner, P. Cooper, R. Costanza, S. Farber, R. E. Green, M. Jenkins, P. Jefferiss, V. Jessamy, J. Madden, K. Munro, N. Myers, S. Naeem, J. Paavola, M. Rayment, S. Rosendo, J. Roughgarden, K. Trumper, and R. K. Turner 2002. Economic reasons for conserving wild nature. *Science* 297: 950-953)

Social Capital: "Not Unto Ourselves Alone Are We Born."

From: R. Putnam, *Bowling Alone: The Collapse and Revival of American Community* NewYork: Simon and Schuster, 2000).

Social Capital Survey Questions

work by: Morgan Grove, Bill Burch, Matt Wilson, and Amanda Vermuri as part of the Baltimore Ecosystem Study: http://www.ecostudies.org/bes/

- People in the neighborhood are willing to help one another*
- This is a close knit neighborhood*
- People in this neighborhood can be trusted*
- There are many opportunities to meet neighbors and work on solving community problems*
- Churches or temples and other volunteer groups are actively supportive of the neighborhood*
- There is an active neighborhood association
- Municipal (local) government services (such as sanitation, police, fire, health & housing dept) are adequately provided and support the neighborhood's quality

* Included in Social Capital Index; Cronbachs alpha = .7758

Social Capital Index by Census Block Group

Integrated Ecological Economic Modeling

- Used as a Consensus Building Tool in an Open, Participatory Process
- Multi-scale, Landscape Scale and Larger
- Acknowledges Uncertainty and Limited Predictability
- Acknowledges Values of Stakeholders
- Simplifies by Maintaining Linkages and and Synthesizing
- Evolutionary Approach Acknowledges History, Limited Optimization, and the Co-Evolution of Humans and the Rest of Nature

Three Step Modeling Process*

1. Scoping Models

high generality, low resolution models produced with broad participation by all the stakeholder groups affected by the problem.

2. Research Models

more detailed and realistic attempts to replicate the dynamics of the particular system of interest with the Complexity, emphasis on calibration and testing. Cost, Realism,

3. Management Models

medium to high resolution models based on the previous two stages with the emphasis on producing future management scenarios - can be simply exercising the scoping or research models or may require further elaboration to allow application to management questions

*fromCostanza, R. and M. Ruth. 1998. Using dynamic modeling to scope environmental pl and build consensitionmental Management2:183-195.

Gund Institute for Ecological Economics, University of Vermont

Increasing

and Precision

Mediated Modeling

SYSTEM DYNAMICS APPROACH TO ENVIRONMENTAL CONSENSUS BUILDING

Marjan van den Belt

LANDSCAPE SIMULATION MODELING A SPATIALLY EXPLICIT, DYNAMIC APPROACH ROBERT COSTANZA ¥ ALEXEY VOINOV

The Everglades Landscape Model (ELM v2.1) http://www.sfwmd.gov/org/erd/esr/ELM.html

The ELM is a regional scale ecological model designed to predict the landscape response to different water management scenarios in south Florida, USA. The ELM simulates changes to the hydrology, soil & water nutrients, periphyton biomass & community type, and vegetation biomass & community type in the Everglades region.

Current Developer s

South Florida Water Management Distric t H. Carl Fitz Fred H. Sklar Yegang Wu Charles Cornwell Tim Waring

Recent Collaborators

University of Maryland, Institute for Ecological Economic s Alexey A. Voinov Robert Costanza Tom Maxwell Florida Atlantic Universit y Matthew Evett

The Patuxent and Gwynns Falls Watershed Model s (PLM and GFLM)

http://www.uvm.edu/giee/PLM

This project is aimed at developing integrated knowledge and new tools to enhance predictive understanding of watershed ecosystems (including processes and mechanisms that govern the interconnect ed dynamics of water, nutrients, toxins, and biotic components) and their linkage to human factors affecting water and watersheds. The goal is effective management at the watershed scale.

Participants Include:

Robert Costanza Roelof Boumans Walter Boynton Thomas Maxwell Steve Seagle Ferdinando Villa Alexey Voinov Helena Voinov Lisa Wainger

Patuxent Watershed Scenarios*

		Land Use				Nitrogen Loading			Nitrogen to Estuary			Hydrology		N in GW	NPP	
		Forest	Resid	Urban	Agro	Atmos	Fertil	Decomp	Septic	N aver.	N max	N min	Wmax	Wmin	N gw c.	NPP
	Scenario		number	of cells			kg/h	a/year			mg/l		m/y	ear	mg/l	kg/m2/y
1	1650	2386	0	0	56	3.00	0.00	162.00	0.00	3.14	11.97	0.05	101.059	34.557	0.023	2.185
2	1850	348	7	0	2087	5.00	106.00	63.00	0.00	7.17	46.61	0.22	147.979	22.227	0.25	0.333
3	1950	911	111	28	1391	96.00	110.00	99.00	7.00	11.79	42.34	0.70	128.076	18.976	0.284	1.119
4	1972	1252	223	83	884	86.00	145.00	119.00	7.00	13.68	60.63	0.76	126.974	19.947	0.281	1.72
5	1990	1315	311	92	724	86.00	101.00	113.00	13.00	10.18	40.42	1.09	138.486	18.473	0.265	1.654
6	1997	1195	460	115	672	91.00	94.00	105.00	18.00	11.09	55.73	0.34	147.909	18.312	0.289	1.569
7	BuildOut	312	729	216	1185	96.00	155.00	61.00	21.00	12.89	83.03	2.42	174.890	11.066	0.447	0.558
8	BMP	1195	460	115	672	80.00	41.00	103.00	18.00	5.68	16.41	0.06	148.154	16.736	0.23	1.523
9	LUB1	1129	575	134	604	86.00	73.00	98.00	8.00	8.05	39.71	0.11	150.524	17.623	0.266	1.494
10	LUB2	1147	538	134	623	86.00	76.00	100.00	11.00	7.89	29.95	0.07	148.353	16.575	0.269	1.512
11	LUB3	1129	577	134	602	86.00	73.00	99.00	24.00	7.89	29.73	0.10	148.479	16.750	0.289	1.5
12	LUB4	1133	564	135	610	86.00	74.00	100.00	12.00	8.05	29.83	0.07	148.444	16.633	0.271	1.501
13	agro2res	1195	1132	115	0	86.00	0.00	96.00	39.00	5.62	15.13	0.11	169.960	17.586	0.292	1.702
14	agro2frst	1867	460	115	0	86.00	0.00	134.00	18.00	4.89	12.32	0.06	138.622	21.590	0.142	2.258
15	res2frst	1655	0	115	672	86.00	82.00	130.00	7.00	7.58	23.50	0.10	120.771	20.276	0.18	1.95
16	frst2res	0	1655	115	672	86.00	82.00	36.00	54.00	9.27	39.40	1.89	183.565	9.586	0.497	0.437
17	cluster	1528	0	276	638	86.00	78.00	121.00	17.00	7.64	25.32	0.09	166.724	17.484	0.216	1.792
18	sprawl	1127	652	0	663	86.00	78.00	83.00	27.00	8.48	25.43	0.11	140.467	17.506	0.349	1.222

* From: Costanza, R., A. Voinov, R. Boumans, T. Maxwell, F. Villa, L. Wainger, and H. Voinov. 2002. Integrated ecological economic modeling of the Patuxent River watershed, Maryland. *Ecological Monographs* 72:203-231.

• Change in value of ecosystem services since 1650 calculated based on values estimated for different land use types (Costanza, et al., 1997). Further adjusted by NPP values calculated by the model. In some cases the NPP adjustment further decreased the ES value (-), in other cases it increased it (+).

GUMBO (Global Unified Model of the BiOsphere)

Solar

Energy

From: Boumans, R., R. Costanza, J. Farley, M. A. Wilson, R. Portela, J. Rotmans, F. Villa, and M. Grasso. 2002. Modeling the Dynamics of the Integrated Earth System and the Value of Global Ecosystem Services Using the GUMBO Model. *Ecological Economics* 41: 529-560

Global Unified Metamodel of the BiOsphere (GUMBO)

- was developed to simulate the integrated earth system and assess the dynamics and values of ecosystem services.
- is a "metamodel" in that it represents a synthesis and a simplification of several existing dynamic global models in both the natural and social sciences at an intermediate level of complexity.
- the current version of the model contains 234 state variables, 930 variables total, and 1715 parameters.
- is the first global model to include the dynamic feedbacks among human technology, economic production and welfare, and ecosystem goods and services within the dynamic earth system.
- includes modules to simulate carbon, water, and nutrient fluxes through the *Atmosphere*, *Lithosphere*, *Hydrosphere*, and *Biosphere* of the global system. Social and economic dynamics are simulated within the *Anthroposphere*.
- links these five spheres across eleven biomes, which together encompass the entire surface of the planet.
- simulates the dynamics of eleven major ecosystem goods and services for each of the biomes

GUMBO Conclusions

- To our knowledge, no other global models have yet achieved the level of dynamic integration between the biophysical earth system and the human socioeconomic system incorporated in GUMBO. This is an important first step.
- Historical calibrations from 1900 to 2000 for 14 key variables for which quantitative time series data was available produced an average R² of .922.
- A range of future scenarios representing different assumptions about future technological change, investment strategies and other factors have been simulated
- Assessing global sustainability can only be done using a dynamic integrated model of the type we have created in GUMBO. But one is still left with decisions about *what* to sustain (i.e. GWP, welfare, welfare per capita, etc.) GUMBO allows these decisions to be made explicitly and in the context of the complex world system. It allows both desirable and sustainable futures to be examined.
- Ecosystem services are highly integrated into the model, both in terms of the biophysical functioning of the earth system and in the provision of human welfare. Both their physical and value dynamics are shown to be quite complex.
- The overall value of ecosystem services, in terms of their relative contribution to both the production and welfare functions, is shown to be significantly higher than GWP (4.5 times in this preliminary version of the model).
- "Technologically skeptical" investment policies are shown to have the best chance (given uncertainty about key parameters) of achieving high and sustainable welfare per capita. This means increased relative rates of investment in knowledge, social capital, and natural capital, and reduced relative rates of consumption and investment in built capital.

Feedback

Amoeba diagram of complexity with which Integrated Global Models (IGMs) capture socioeconomic systems, natural systems, and feedbacks

(from Costanza, R., R. Leemans, R. Boumans, and E. Gaddis. 2006. Integrated global models. Dahlem Workshop on Integrated History and future of People on Earth (IHOPE). (in press)

Four Visions of the Future

			Real State of the World				
			Optimists Are Right (Resources are unlimited)	Skeptics Are Right (Resources are limited)			
Empty World Vision	w & Policy	Technological Optimism Resources are unlimited Technical Progress can deal with any challenge Compitition promotes progress; markets are the guiding principle	Star Trek Fusion energy becomes practical, solving many economic and environmental problems. Humans journey to the inner solar system, where population continues to expand (mean rank 2.3)	Mad Max Oil production declines and no affordable alternative emerges. Financial markets collapse and governments weaken, too broke to maintain order and control over desperate, impoverished populations. The world is run by transnational corporations. (mean rank -7.7)			
Full World Vision	World Vie	Technological Skepticsm Resources are limited Progress depends less on technology and more on social and community development Cooperation promotes progress; markets are the servants of larger goals	Big Government Governments sanction companies that fail to pursue the public interest. Fusion energy is slow to develop due to strict saftey standards. Family-planning programs stabilize population growth. Incomes become more equal. (mean rank 0.8)	EcoTopia Tax reforms favor ecologically beneficent industries and punish polluters and resource depleters. Habitation patterns reduce need for transportation and energy. A shift away from consumerism increases quality of life and reduces waste. (mean rank 5.1)			

from: Costanza, R. 2000. Visions of alternative (unpredictable) futures and their use in policy analysis. *Conservation Ecology* 4(1):5. [online] URL: http://www.consecol.org/vol4/iss1/art5

Millennium Ecosystem Assessment Scenarios

TechnoGarden

Globally connected world relying strongly on environmentally sound technology, using highly managed, often engineered, ecosystems to deliver ecosystem services, and taking a proactive approach to the management of ecosystems in an effort to avoid problems.

Global Orchestration

Globally connected society that focuses on global trade and economic liberalization and takes a reactive approach to ecosystem problems but that also takes strong steps to reduce poverty and inequality and to invest in public goods such as infrastructure and education.

Order from Strength

Regionalized and fragmented world, concerned with security and protection, emphasizing primarily regional markets, paying little attention to public goods, and taking a reactive approach to ecosystem problems.

Adapting Mosaic

Regional watershed-scale ecosystems are the focus of political and economic activity. Local institutions are strengthened and local ecosystem management strategies are common; societies develop a strongly proactive approach to the management of ecosystems.

Changes in human well-being under Millennium Assessment scenarios

- In three of the four MA scenarios, between three and five of the components of well-being (material needs, health, security, social relations, freedom) improve between 2000 and 2050
- In one scenario (Order from Strength) conditions are projected to decline, particularly in developing countries

Net change in components of human well-being

Source: Millennium Ecosystem Assessment

Envisioning a Sustainable and Desirable America

The vision so far (see http://www.uvm.edu/giee/ESDA)

World View

Humans as a part of nature Steady state, ecological economy Goal quality of life rather than consumption

Natural Capital

Protected as essential life support Depletion heavily taxed

Built Capital

Runs on renewable energy and natural capital Emphasis on quality rather than quantity Small communities rule (both within and outside cities)

Human Capital

Balance of synthesis, analysis, and communication Meaningful, creative work and leisure Stable populations

Social Capital

A primary source of productivity and well-being "Strong" democracy

The UNIVERSITY of VERMONT

The Rubenstein School of Environment and Natural Resources

Goal: building (as) an ecosystem

producing a net positive contribution to built capital, human capital (education), social capital (community interactions) and natural capital (ecosystem services)

Intentional communities (co-housing, ecovillages, etc). as attempts to balance built, human, social, and natural capital to enhance sustainable quality of life

The Big Challenge:

Create a *shared* vision of a sustainable and desirable future

Some Implications for Policy and Implementation:

Making the Market Tell the Truth

Dealing with Uncertainty: Changing the Burden of Proof

Sustainable Trade

Making the market tell the truth

In general, privatization is NOT the answer, because most ecosystem services are public goods. But we do need to adjust market incentives to send the right signals to the market. These methods include:

•Ecological tax reform (tax bads not goods, remove perverse subsidies)

•Full cost pricing (i.e. <u>www.trucost.org</u>) linked to investment fund management

•Ecosystem service payments (a la Costa Rica)

•Conservation easements and concessions (a la Conservation International)

•Environmental Assurance bonds to incorporate uncertainty about impacts (i.e. the Precautionary Polluter Pays Principle - 4P)

See:

Bernow, S., R. Costanza, H. Daly, et. Al. 1998. Ecological tax reform. BioScience 48:193-196.

Costanza, R. and L. Cornwell. 1992. The 4P approach to dealing with scientific uncertainty.

Environment 34:12-20,42.

Sustainable Trade:

Remove environmental and labor externalities FIRST (via the previous methods) THEN allow trade to occur. This will allow trade to create real, socially beneficial gains, rather than mislabeling externalized costs as benefits of trade.

See: Ekins, P., C. Folke, and R. Costanza. 1994. Trade, environment and development: the issues in perspective. *Ecological Economics* 9:1-12.

Costanza, R., J. Audley, R. Borden, P. Ekins, C. Folke, S. O. Funtowicz, and J. Harris. 1995. Sustainable trade: a new paradigm for world welfare. *Environment* 37:16-20, 39-44.

Lisbon Principles of Sustainable Governance:

- **1. Responsibility Principle**
- 2. Scale-Matching Principle
- **3. Precautionary Principle**
- 4. Adaptive Management Principle
- **5. Full Cost Allocation Principle**
- **6.** Participation Principle

From: Costanza, R. F. Andrade, P. Antunes, M. van den Belt, D. Boersma, D. F. Boesch, F. Catarino, S. Hanna, K. Limburg, B. Low, M. Molitor, G. Pereira, S. Rayner, R. Santos, J. Wilson, M. Young. 1998. Principles for sustainable governance of the oceans. *Science* 281:198-199.

Conclusions:

•The environment is not a luxury good. Ecosystem services contribute to human welfare and survival in innumerable ways, both directly and indirectly, and represent the majority of economic value on the planet, especially for the "poor".

•Ecosystem services, and the natural capital stocks that produce them, have been depleted and degraded by human actions to the point that the sustainability of the system is threatened.

•A Sustainable and Desirable Earth (Ecotopia/Adapting Mosaic) scenario would **increase** the sustainable quality of life of people on earth significantly over a Business as Usual scenario.

•A sustainable and desirable future is both possible and practical, but we first have to create and communicate the **vision** of that world in compelling terms. We have to design the future.

Surprise Washington! US is already halfway to Kyoto!

(from: Fisher, B and R. Costanza. 2005. Regional commitment to reducing emissions. *Nature* 438:301-302

		Population (thousands)	% of Total US Population	Gross Product 2003 (billions)	% of Total GDP
Current Adopters					
California***		35,484	12.19%	1,446	13.26%
Connecticut*		3,483	1.20%	172	1.58%
Maine*		1,306	0.45%	41	0.38%
Massachusetts*		6,433	2.21%	297	2.73%
New Hampshire*		1,288	0.44%	49	0.45%
New Mexico**		1,875	0.64%	57	0.52%
New York*		19,190	6.59%	822	7.53%
Rhode Island*		1,076	0.37%	40	0.36%
Vermont*	_	619	0.21%	21	0.19%
	Subtotal	70,755	24.31%	2,945	26.99%
Probable Adopters					
New Jersey		8,638	2.97%	397	3.64%
Oregon		3,560	1.22%	120	1.10%
Washington	_	6,131	2.11%	245	2.24%
	Subtotal	18,329	6.30%	763	6.99%
Possible Adopters					
25 US Municipalities		12,774	4.38%	1,673	15.34%
	Totals				
Cui	rrent Adopters	70,755	24.31%	2,945	26.99%
SUM (Current, Prob	able, Possible)	101,859	34.99%	5,381	49.32%
ι	Jnited States	291,000		10,911	

*Pledged 10% reduction, below 1990 levels by 2020

** Pledged 10% reduction, below 2000 levels by 2020

*** Pledged to reach 1990 levels by 2020

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.