Beyond Carbon -Emerging Markets for Ecosystem Services Forest Trends/Katoomba/Swiss Re Conference Zurich October 29-30, 2003

Advances in Measuring and Monitoring Carbon and other Ecosystem Services

Sandra Brown Winrock International sbrown@winrock.org

Measuring and Monitoring

 For market confidence, need accurate and precise estimates of the "commodity"

- Projects must make a difference
 - Baselines for all ecosystem services
- Need minimum set of standards
- Techniques must be cost efficient
- Easily understandable and transparent
- Verifiable

Topics

- Approach for identifying where to locate projects and how to develop baselines
- Aerial digital imagery for measuring carbon
- Aerial digital imagery for change detection and monitoring of carbon and other ecosystem services

Baselines

A baseline has two components:

- a projection of changes in land use through time
- the corresponding changes in carbon stocks
- These two components can be treated separately

Location of project areas

Baselines—way forward

- Develop spatially explicit baselines to incorporate factors that influence the way people use the land and other conservation and development goals
- Develop baseline at regional scales before start of project
- Recognize that baseline projections beyond a 10-year period are not likely to be realistic—rates of land-use change are subject to many factors which are difficult to predict over the long term

Implementation of spatial approach for baseline setting:

- A three-step approach:
 - 1. Use spatial model to develop the "potential landuse change map" rescaled to three levels of potentiality for change—high, medium, and low
 - 2. Project land-use change over a 10-year period based on either
 - Simple projection of past rates (past 5-10 year) determined from remote sensing, or...
 - A simple model of human population and deforestation

(http://www.winrock.org/what/ecosystem_pubs.cfm)

Example of a rescaled PLUC map

Outside Analysis or No Potentiality Low Deforestation Potentiality Med Deforestation Potentiality High Deforestation Potentiality Already Developed

Implementation of spatial approach for baseline setting:

- 3. Convert the PLUC map to a carbon baseline at the potential project site
 - I dentify project area and measure its carbon using standard approaches (e.g., <u>http://www.winrock.org/what/ecosystem_pubs.cfm</u>)
- Re-assess potentiality for land-use change and rates of change on a 10 yr cycles for updated baselines

Carbon baseline for Noel Kempff project, Bolivia

Combine the projected rate of change with the project specific carbon stocks to generate a carbon baseline

Multispectral 3D aerial digital imagery system

Measuring and monitoring carbon
Monitoring other ecosystem services

Multispectral 3D aerial digital imaging system

- •Fits in a portable camera pod
- Will fit into commercial airline luggage
- Attaches to any Cessna in about an hour

The laser accurately measures a profile of crown height along each strip

Noel Kempff Mercado National Park, Bolivia

This 3D approach provides new methods for studying and mapping forest canopies and individual trees

Noel Kempff Mercado National Park, Bolivia

These can be re-flown to monitor change in the forest on an individual tree level.
Produces a virtual forest for later analyses

Application of M3DADI to measure carbon in forests

Two steps involved:

- Collect and analyze digital imagery of ecosystem
- Collect and analyze ground data to use in combination with imagery

Flight paths for collecting M3DADI of the pine savanna in Belize

From M3DADI the following data are measured (in Stereo Analyst)

- Trees: crown areas and tree heights, by pines and broadleaf
- Shrubs: crown area and height class for all species combined
- Palmettos:
 - Thickets- aerial extent and average height class
 - Clumps (associated with pine woodlands)—crown area and height class
- Grasses: aerial extent by sparse and dense classes

Models of biomass carbon and measures of crown area and height by plant types based on field data

Total biomass carbon is a function of pine tree crown area

Change Detection and Monitoring

Acknowledgements

- Funding from: US Environmental Protection Agency, US Department of Energy, The Nature Conservancy, US AID-Mexico, and EPRI
- Colleagues at Winrock: Aaron Dushku, Dana Slaymaker, Nathan Moore, Jonathan Brooks, Tim Pearson, John Kadyszewski, and Matt Delaney
- Cooperators: Myrna Hall, Richard Vaca, Wilbur Sabido, Darrell Novelo, Bill Stanley, Omar Masera, Gabriela Guerrero, Miguel Calmon, Ben DeJong, Ken Andrasko, and David Antonioli