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Abstract. Coral reefs provide a number of ecosystem services including coastal defense
from storms, the generation of building materials, and fisheries. It is increasingly clear that the
management of reef resources requires an ecosystem approach in which extractive activities
are weighed against the needs of the ecosystem and its functions rather than solely those of the
fishery. Here, I use a spatially explicit simulation model of a Caribbean coral reef to examine
the ecosystem requirements for grazing which is primarily conducted by parrotfishes
(Scaridae). The model allows the impact of fishing grazers to be assessed in the wider context
of other ecosystem processes including coral–algal competition, hurricanes, and mass
extinction of the herbivorous urchin Diadema antillarum. Using a new analytical model of
scarid grazing, it is estimated that parrotfishes can only maintain between 10% and 30% of a
structurally complex forereef in a grazed state. Predictions from this grazing model were then
incorporated into a broader simulation model of the ecosystem. Simulations predict that
scarid grazing is unable to maintain high levels of coral cover (�30%) when severe hurricanes
occur on a decadal basis, such as occurs in parts of the northern Caribbean. However, reefs
can withstand such intense disturbance when grazing is undertaken by both scarids and the
urchin Diadema. Scarid grazing is predicted to allow recovery from hurricanes when their
incidence falls to 20 years or less (e.g., most of Central and South America). Sensitivity
analyses revealed that scarid grazing had the most acute impact on model behavior, and
depletion led to the emergence of a stable, algal-dominated community state. Under
conditions of heavy grazer depletion, coral cover was predicted to decline rapidly from an
initial level of 30% to less than 1% within 40 years, even when hurricane frequency was low at
60 years. Depleted grazers caused a population bottleneck in juvenile corals in which algal
overgrowth caused elevated levels of postsettlement mortality and resulted in a bimodal
distribution of coral sizes. Several new hypotheses were generated including a region-wide
change in the spatial heterogeneity of coral reefs following extinction of Diadema. The
management of parrotfishes on Caribbean reefs is usually approached implicitly through no-
take marine reserves. The model predicts that depletion of grazers in nonreserve areas can
severely limit coral accretion. Other studies have shown that low coral accretion can reduce the
structural complexity and therefore quality of the reef habitat for many organisms. A
speculative yet rational inference from the model is that failure to manage scarid populations
outside reserves will have a profoundly negative impact on the functioning of the reserve
system and status of non-reserve reefs.
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marine reserve networks; reef fish.

INTRODUCTION

Coral reefs are among the most diverse ecosystems on

Earth and at least 100 million people have either

economic or cultural dependencies on their resources

(Bryant et al. 1998, Cesar 2000, Whittingham et al.

2003). A combination of overpopulation, poverty, and

changing climate threaten extensive areas of coral

habitat, its biodiversity, and the viability of its

commercial resources (Wilkinson 2002, Hughes et al.

2003, Hoegh-Guldberg 2004). Improved management of

reef resources is essential if the functions and ecosystem

services of coral reefs are to be sustained throughout an

increasingly stressful physical environment, driven

primarily by global changes in sea temperature and

carbonate chemistry (Buddemeier et al. 2004).

The management of reef resources is often sought

through a combination of fisheries regulations and

marine reserves (Polunin and Roberts 1996). Most

marine reserves have at least two goals; to help sustain

fisheries and conserve marine biodiversity (Agardy 1994,

Holland and Brazee 1996, Halpern 2003). In principle,

fisheries may benefit if the reserve acts as a source of

larvae to exploited areas or if adult fish move directly

beyond reserve boundaries (spillover), thereby main-

taining a local fishery around the reserve (DeMartini

1993, Palumbi 2001). Biodiversity conservation is

usually sought by protecting an adequate area and

number of habitats for a range of species, which is
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typically achieved through a systematic approach to

habitat and species representation (McNeill 1994, Ward

et al. 1999, Possingham et al. 2000, Sala et al. 2002,

Beger et al. 2003).

To date, much research has focused on the efficacy of

marine reserves for fisheries management (see reviews by

Roberts 1993, Hall 1998, Dayton et al. 2000, Russ 2002).

Recent studies have extended this perspective to consid-

er the compatibility of reserve designs for conserving

both fisheries and marine biodiversity (Hastings and

Botsford 2003). However, the use of reserves for

managing nonfishery ecosystem services has received

little explicit consideration. In the case of coral reefs,

many ecosystem services, such as coastal defense from

hurricanes, the generation of building materials, and the

generation of revenue from tourism are underpinned by

the corals themselves (Done et al. 1996, McManus 1997,

Moberg and Folke 1999). Therefore, the wider aim of

managing multiple ecosystem services requires a broad,

ecosystem-level approach that encompasses fish, corals,

and the processes that maintain them. Not only is an

ecosystem-level approach more inclusive, but it is likely

to increase the long-term sustainability of core services

such as fisheries. Indeed, many fisheries management

agencies are actively switching towards an ecosystem-

based approach to fisheries (reviewed in Browman and

Stergiou 2004) in which the multiple needs of the fishery,

ecosystem, and human society are considered simulta-

neously (Food and Agriculture Organization of the

United Nations 2003).

An ecosystem approach to management is particularly

appropriate for coral reefs because ecosystem services,

fishing, and habitat quality are intimately related. A

healthy coral community contributes to the bioconstruc-

tion of a structurally complex habitat. A complex

habitat, referred to as having high rugosity, provides

refugia and food resources for many marine organisms

and their prey (Hixon and Beets 1993). Rugosity is

positively correlated to the density of many fish species

(Luckhurst and Luckhurst 1978, Roberts and Ormond

1987, van Rooij et al. 1996) and may mediate density-

dependent competition and predator–prey interactions

(Carr et al. 2002). High rugosity may also facilitate

higher alpha diversity at small scales (McCormick 1994).

A decline in coral production may allow processes of

bioerosion (Hutchings 1986) to exceed bioconstruction,

resulting in a gradual flattening of the reef structure and

fall in rugosity (Scoffin et al. 1980, Glynn 1997). Reef

degradation will have direct negative consequences for

coral-associated species (Jones et al. 2004) and indirect,

delayed consequences for those taxa with a more general

association with reef structure (McCormick 1994).

Although habitat quality is by no means the only factor

influencing reef organisms (see Caley et al. 1996), a well-

maintained reef habitat will underpin multiple ecosys-

tem functions and help achieve the goals of biodiversity

conservation and high fisheries yield.

Of the processes influencing the structure of reef

habitats, grazing is potentially one of the easiest to

manage through restrictions to the level of fishing of

grazing organisms (Roberts 1995, Rakitin and Kramer

1996). Extremes of grazing intensity have been shown to

influence coral–algal interactions and the cover of living

coral (Hatcher and Larkum 1983, Carpenter 1986, Lewis

1986, Morrison 1988, McClanahan 1992, Hughes 1994,

Steneck 1994, Jompa and McCook 2002). For example,

the Caribbean-wide mass mortality of the urchin,

Diadema antillarum in 1983 (Lessios et al. 1984), may

have contributed significantly to the lack of coral

recovery at many sites in Jamaica that were impacted

by hurricanes, coral disease, and long-term overfishing

(Hughes 1994, Aronson and Precht 2000). Indeed, the

paucity of D. antillarum persists in most of the

Caribbean (Kramer 2003) leaving parrotfishes (Scari-

dae) as the dominant grazer in most areas (Carpenter

1986, Steneck 1994).

While many experimental studies have documented

profound impacts of parrotfish exclusion on Caribbean

reefs (Carpenter 1986, Lewis 1986, Morrison 1988,

McClanahan et al. 2003), the impact of fishing, which

leads to grazer depletion rather than exclusion, has not

been quantified. Moreover, with the continued scarcity

of Diadema and recent evidence suggesting that scarid

grazing is spatially limited (Williams et al. 2001), it is not

clear whether modern-day Caribbean reefs receive

sufficient grazing to maintain essential ecosystem

services such as net coral accretion. Here, I use two

models to explore the impact of fishing parrotfishes on

coral dynamics. The first model simulates ecosystem

processes (Fig. 1) and by manipulating the incidence of

hurricanes, it highlights Caribbean-wide variation in reef

dynamics and their implication for marine reserves and

ecosystem-based management. A second model quanti-

fies the impact on grazing of depleting parrotfish

biomass. Outcomes from this model are used to

parameterize the simulation model and represent the

impact of fishing parrotfishes.

In this era of a functionally obsolete urchin and

dependency on vertebrate grazing, this study tests the

following hypotheses:

H1) An unfished community of parrotfishes provides

adequate grazing to maintain net reef accretion (in the

absence of acute disturbance events and Diadema

antillarum).

H2) Regional variation in hurricane frequency im-

pacts the trajectory of Caribbean reefs.

H3) Depleting the biomass of parrotfishes (grazing)

has a disproportionately large impact on coral dynamics

(compared to expected variation in other parameters).

H4) Depleting the biomass of parrotfishes (grazing)

can precipitate shifts in community state from coral-rich

to macroalgal-dominated ecosystems.

Given current concerns over the impact of climate

change (Hoegh-Guldberg 2004) and epidemics of coral
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disease (Harvell et al. 1999), the model is also used to

generate testable hypotheses for the response of reefs to

various intensities and frequencies of disturbance.

METHODS

Two models were developed in this study. The first

was a simulation model of ecosystem processes occur-

ring on Caribbean forereefs (Fig. 1). Whilst this model

included the net impact of grazers on algal communities,

a second model was developed to estimate the impact of

depleting the total biomass of parrotfishes on grazing.

The latter model was sensitive to the species, sex, and

size frequency distribution of scarids. The scope of the

simulation model is described in the next section, but the

majority of parameters are justified in the Appendix.

Details of the grazing models are presented here because

of their novelty and importance to the study.

Scope of simulation model

I focus on Caribbean coral reefs because their low

functional diversity simplifies the challenge of modeling

their dynamics. The model was parameterized for mid-

depth (5–15 m) forereefs of the Montastraea annularis

zone (Geister 1977) which typically have the highest

FIG. 1. Processes included in the simulation model (arrows) that link the major functional categories of reef organisms (boxes).
Urchin grazing is not shown, and hurricanes are depicted as external sources of acute disturbance.
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biomass and diversity of reef organisms (Mumby,

unpublished data). Since white band disease has depleted

populations of large, branching corals (Aronson and

Precht 2001), I modeled stylized massive growth forms

of coral and included their recruitment, growth,

fecundity, and reproduction (either broadcast spawning

of gametes or internal development of brooded planulae

that disperse locally). The model is a square lattice of

2500 cells, each of which approximates 0.25 m2 of reef,

and can be occupied by a mixture of living and dead

substrata (Table 1, Fig. 2). At this cell size, the lattice

represents a minimum area of only 25 m by 25 m, which

is clearly at odds with the size of individual reefs which

may span kilometers or tens of kilometers. The gulf in

scale was bridged by using a torus (which has

continuous boundaries), and by representing several

modeled processes, such as hurricane disturbance, using

their mean behavior at reef scales rather than attempting

to segregate the reef into sub-reefs of heavy and light

disturbance. For example, reefs in the direct path of a

hurricane may experience 50–100% whole-colony mor-

tality, whereas mortality at the whole-reef scale may be

nearer to 30% (Bythell et al. 1993). Subdividing the reef

(torus) to capture small-scale variation in impacts would

be both computationally challenging and difficult to

parameterize meaningfully. It is assumed that sedimen-

tation levels are low and that algal production is high as

is typical of seaward forereefs in either offshore, arid, or

coastal areas with little terrigeneous runoff. The model

uses discrete time intervals of six months, which are

appropriate for coral growth rates and commensurate

with empirical studies on algal patch dynamics (de

Ruyter van Steveninck and Breeman 1987). Simulations

used either a single reef or four reefs connected in a

circular, stepping-stone manner such that coral larvae

are both retained in a local reef and transported in a

unidirectional current to the next reef downstream (Fig.

2). Coding was accomplished using Matlab (The Math-

works, Natick, Massachusetts, USA) and each reef was

represented separately using an 11-layer matrix where

each layer represented the cover of a single size category

of algae (layers 1–4), the number of coral colonies in a

cell and cover of sand (layer 5), or the size of an

individual coral colony (layers 6–11, divided equally

among brooders and spawners). Individual cells are

updated on a 6-monthly basis and in a random

sequence.

Although this is a simulation model, several of the

parameters, such as coral growth rate, are entered as

constants rather than allowed to vary probabilistically.

While this would be inappropriate if the model were

used to predict the full range of potential reef states, this

approach avoids unnecessary variation from relatively

well-established parameters and is consistent with other

models of reef processes (McClanahan 1995, Langmead

and Sheppard 2004). In other words, outcomes of the

model focus on the impact of different grazing levels,

hurricane frequencies, and connectivity scenarios rather

than other internal parameters.

One parameter, the probability that corals of a given

size are overgrown by macroalgae, was fitted by

comparing model simulations to a twenty year time

series of coral dynamics from Jamaica (Hughes 1994).

Details of this parameterization are given in the

Appendix, but the overall goodness-of-fit between model

and empirical data is compelling (Fig. 3); the model

behaves like a reef even when the overgrowth parameter

is manipulated.

Modeling the process of grazing on Caribbean forereefs

Grazing of parrotfishes (scarids) in the simulation

model.—Parrotfish (Scaridae) are usually the most

significant fish grazer on Caribbean reefs (Carpenter

1986, Steneck 1994). Species differ in their preferred food

and substratum requirements and feed almost continu-

ously during the day (Randall 1961, 1967, Hanley 1984,

Bruggemann et al. 1994a, b, c, 1996, Steneck 1994, van

Rooij et al. 1995b, Overholtzer and Motta 1999). There

is, therefore, a problem of scale; most observations of

parrotfish grazing occur on a scale of seconds to minutes

whereas the model has a discrete time scale of six months,

largely because of the paucity of data on algal patch

dynamics at finer temporal scales (see Appendix).

Moreover, observations of grazing rate do not predict

algal cover directly because cover is the outcome of a

dynamic balance between algal production (area for

colonization, recruitment rate, and growth) and algal

removal (principally grazing). The simulation model

TABLE 1. Contents of individual cells (0.25 m2) within the model.

Substratum Code Examples Range (cm2)

Brooding coral� BC Porites astreoides 1 � BC � 2500
Spawning coral� SC Siderastrea siderea 1 � SC � 2500
Cropped algae, 0–6 mo A6 Filamentous, coralline red algae, and short turfs 0 � A6 � 2500
Cropped algae, 6–12 mo A12 Filamentous, coralline red algae, and short turfs 0 � A12 � 2500
Macroalgae, 0–6 mo M6 Dictyota pulchella, Lobophora variegata 0 � M6 � 2500
Macroalgae, 6þ mo M12 Dictyota pulchella, Lobophora variegata 0 � M12 � 2500
Ungrazable substratum� U Sand U ¼ 0 or U ¼ 2500

Note: All substrata are represented as area (cm2).
� Up to three individuals per cell.
� Fills entire cell if present.
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required an estimate of the net impact of grazing: the

surface area of reef that is grazed sufficiently often that

algae are maintained in a cropped state and prevented

from escaping into a macroalgal canopy. Williams et al.

(2001) artificially increased coral cover in 5 3 5 m plots

and observed a corresponding decrease in macroalgae

whilst cropped substrata were maintained at an equi-

librial level of 50% by the end of the 5 month treatment.

The authors inferred that grazers were able to maintain

up to 60% of the substratum in a cropped state.

The reefs studied by Williams et al. (2001) have a

lower rugosity than that implied by the model so to

adapt their results to the habitat modeled here, and

partially test the generality of their conclusions, a simple

comparison was performed. First, I compared the

rugosity between their site (Ambergris Caye, rugosity

¼ 1.2) and that of Long Cay (LC), Glovers Reef, which

better represents the reefs being modeled (rugosity ¼
1.98). The area grazed was then adjusted for the

differences in surface area (rugosity, R) and parrotfish

FIG. 2. (A) Implementation of simulation model including four reefs separated by ocean in a unidirectional stepping-stone
approach. Reefs with a bold outline are reserves in which parrotfish grazing is maintained at high levels (30% of reef effectively
grazed per iteration). (B) Individual reefs have a grid of 2500 cells whose typical composition is illustrated in detail in panel (C).
Two types of coral (yellow, spawning; red, brooding) are shown with patches of partial-colony mortality (PM) that are initially
colonized by cropped algae (gray; b, g) and later by macroalgae (green; b). Recently dead corals are shown in cells d, e, and i, and
their shading denotes the age class (,6 mo vs. 6–12 mo) of cropped algae.
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biomass, B (;270 g/25 m2 and 220 g/25 m2 at Ambergris

Caye and Long Cay in 1998, respectively) using Eq. 1,

suggesting a drop in the grazable percentage from ;60%

of the reef to 30% of Montastraea reefs. This estimate

was then compared to the observed cover of cropped

substratum at Long Cay in the summer of 1998 when the

reef was in good health (42% coral cover) since it had

not been severely disturbed since 1978 (i.e., as close to

equilibrial conditions as is likely to be found in Belize).

Since the cover of cropped substrata was 31% in July

1998, which closely fitted the prediction (30%), grazing

was constrained to a maximum of 30% of the

substratum:

Percentage of reef grazedLC

¼ BLC

BW

� �
RW

RLC

� �
3 63

� �
ð1Þ

where W denotes the Williams et al. study in a lower-

rugosity habitat in which the percentage area grazed was

63%.

The approach described here to quantify scarid

grazing in unexploited systems makes two implicit

assumptions. First, that the biomass of scarids at Long

Cay is representative of unexploited Montastraea reefs.

In fact, the biomass of scarids at this site is among the

highest reported anywhere in the Caribbean (Fig. 4) and

is likely to approach maximal levels for the region. The

high biomass of parrotfishes is probably underpinned by

relatively high primary production: the forereef at Long

Cay faces the wider Caribbean (high fetch), and has

clear water and relatively high inorganic nutrient

concentrations (McClanahan et al. 2004), possibly

resulting from upwelling near the atoll. A second

assumption of the model is that the entire scarid

community can maintain the efficiency of its grazing

even if coral cover declines and algae occupy a larger

surface area of the reef, which would otherwise tend to

reduce grazing efficiency (i.e., it is less likely that a given

patch would be regrazed sufficiently often to prevent

macroalgal escape). The degree to which scarids can

fully compensate for a change in algal colonization

space is not fully understood. However, a number of

studies have reported substantial increases in grazing

rate after an increase in algal production (Carpenter

1985, Steneck 1994, Russ and McCook 1999, Diaz-

Pulido and McCook 2003). Furthermore, a positive

numerical response in parrotfish biomass at Long Cay

has been documented in the four years since the reefs

were struck by Hurricane Mitch in 1998 (Mumby et al.

2005). Importantly, the total cover of grazed substratum

has remained at ca 30% despite a drastic decline in coral

cover from 42% to ca 18% in five years. This result seems

to be representative of Montastraea reefs in Belize since

a 300 km wide survey of cropped algae at 16 reefs

recorded a mean cover of 28% (Mumby, unpublished

data). These surveys were undertaken in June 2002,

nearly four years after Hurricane Mitch had widespread

impacts on the cover of corals and macroalgae (Kramer

et al. 2000). Given that the dominant scarid in Belize

(Sparisoma viride) grows quickly, potentially reaching a

length of 250 mm between the hurricane impact and

FIG. 3. Refinement of the model predictions (heavy line) using empirical data (solid squares) for the decline in reefs in
Discovery Bay (Jamaica), at a depth of 10 m between 1975 and 1993 (Hughes 1994). Each of the other lines represents a different
putative relationship between the risk of algal–coral overgrowth and size of coral colony. That of the heavy line was used in
subsequent model simulations.
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sampling in 2002 (Choat et al. 2003), these results may

incorporate a numerical response by parrotfishes to the

change in benthic community structure. In short, it

seems fair to assume that parrotfishes can maintain

around 30% of a Montastraea reef in a grazed state even

allowing for increases in grazing rate and numerical

responses to increased food availability.

Cells are grazed in a random order and all cropped

algae and macroalgae are converted to (or remain in) the

initial cropped algal state until the spatial constraint is

reached (e.g., 30% of the total reef area). Once the

threshold algal cover is reached, no further algae are

grazed during the time step. Grazing does not eliminate

coral recruits (Birkeland 1977). Parrotfishes do not

discriminate between cropped algae and macroalgae

which is consistent with field observations of bites taken

by adult parrotfishes in which the ratio of bites on

macroalgae (chiefly Dictyota spp.) to cropped algae was

1:1.05 (Mumby, unpublished data).

Effects of fishing parrotfishes on grazing (second model

of the study).—The grazing behavior of parrotfishes

varies among species, by size and by life phase

(Bruggemann et al. 1994a, b, c, 1996). However, most

accounts of scarid abundance provide total biomass

rather than a detailed breakdown of community

composition. A new model of grazing was created to

estimate the relationship between total scarid biomass

and total grazing intensity. This model is entirely

unrelated to the simulation model and estimates scarid

grazing intensity in area grazed per unit time (rather

than the net impact of grazing on the algal community

which is used in the simulation model).

The model adapts the work of Bruggemann (1995) on

two genera of parrotfishes in Bonaire (Sparisoma viride

and Scarus vetula) by extending it to multiple scarid

species, using data from Belize (based on 20-min

observations of grazing intensity, n ¼ 18 per species;

Mumby, unpublished data). The model assumes that

allometric relationships between FL and both bite rate

and mouth size can be extrapolated within genera, and is

formulated as follows:

Bite rate; r; of Scarus spp: ¼
WSc ½1088� ð17:12 FLÞ� � species offsetf g ð2aÞ

Bite rate; r; of Sparisoma spp: ¼

WSp ½3329� ð33 FLÞ� � species offsetf g: ð2bÞ

Bite rate, r (h�1), is calculated as a function of species (s),

length (l ), and life phase (p) using (2a or 2b) where FL is

the fork length (cm), W is a weighting factor for life

phase such that values for the genus Scarus (WSc) are

0.85 for TP and 1 for IP and juveniles and those for

Sparisoma (WSp) are 0.80 for TP, 1 for IP, and 0.84 for

juveniles. Species-level offsets in the genus Scarus are 0

for Sc. vetula, 1196 for Sc. taeniopterus, and 1714 for Sc.

iserti. Offsets in the genus Sparisoma are 260 for Sp.

aurofrenatum, 142 for Sp. rubripinne, 264 for Sp.

chrysopterum, and 56 for Sp. viride.

FIG. 4. Comparison of scarid biomass at several sites around the Caribbean. The depth of all sites falls between 8 and 12 m and
small individuals (,12 cm standard length) are ignored. Data for Jamaica, Cuba, Cayman Islands, Barbados, and Belize 1
(relatively low-relief reefs) are derived fromWilliams and Polunin (2000). Data for Belize 2, Bahamas, the Turks and Caicos Islands
(TCI), and Long Cay are derived from Mumby (unpublished data). Parameters shown are the median (vertical line), interquartile
range (box), and absolute range (dotted lines).
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Allometric scaling between FL and bite size, m (in

square centimeters) is modeled as

m ¼ M 3 0:001ðFLÞ2 ð3Þ

where M is a constant that takes the value 4.013 in

Scarus and 5.839 in Sparisoma. Derivations of Eqs. 2

and 3 can be found in Bruggemann (1995).

Total grazing intensity (TG) is then

TG ¼
XS

s¼1

XFs

l¼1

XNP

p¼1

rs; l; pms; l; p ð4Þ

where S is the number of species, Fs is the number of size

categories for species s, and NP is the number of phases.

Eqs. 3 and 4 are then combined to convert bite rate to

the percentage of the reef (two-dimensional area) grazed

per hour, G:

G ¼ TG

10 000

� �
1

ta

� �
ð5Þ

where ta is the area of a sampling unit (in square meters)

which, in this case, was 120 m2.

A final level of the model apportioned G into four

food types (algal turfs, encrusting corallines, macro-

algae, and coral), but these more detailed results are not

reported here.

Some of the most intensively fished reefs in the

Caribbean are found in Jamaica (Pandolfi et al. 2003).

Williams and Polunin (2000) presented data on the total

biomass of scarids in Jamaica and the scarid grazing

model was used to scale their observations of biomass to

the expected grazing intensity of scarid communities in

Jamaica. Grazing levels from Jamaica could then be

used to represent the impact of severe scarid exploitation

on the net grazing activity of parrotfishes in the

simulation model. Using data on the full community

structure of scarids on 24 Montastraea reefs in Belize

and Mexico, the grazing model was used to relate total

biomass to total grazing intensity (Fig. 5, r¼ 0.75, P ,

0.0001). Grazing intensity at the simulation model

calibration site of Long Cay was approximately three

times (1.61 vs. 0.58) greater than that in Jamaica so the

net grazing impact of heavily fished scarid communities

was rescaled linearly to one-third that of Long Cay (i.e.,

10% of the reef could be maintained in a cropped state

per time interval of the model). As a final check, the

total combined biomass of scarids and acanthurids were

compared between Jamaica and Long Cay and also

resulted in a ratio of 1:3 (3.9/11.3 g/m2). Many sites in

the Caribbean for which scarid biomass data are

available lie between these two extremes (Fig. 4) and

intermediate levels of fishing were simulated by setting

the grazing constraint at 20% of the reef surface area.

Grazing of Diadema antillarum in simulation model.—

The role of urchin grazing on Caribbean reefs has

received a wealth of research (Ogden et al. 1973,

Carpenter 1981, 1984, Hay 1981, 1984, Sammarco

1982, Hay and Taylor 1985, Foster 1987, Morrison

1988). Diadema is an efficient grazer of algal commun-

ities and may regraze the substratum more frequently

than herbivorous fish (Carpenter 1986). The grazing of

D. antillarum was modeled using data from the U.S.

Virgin Islands. After the die-off of Diadema, Carpenter

(1988) found that the biomass of algae removed dropped

FIG. 5. Modeled grazing intensity of a parrotfish community as a function of its total biomass. The model is sensitive to scarid
species, length, and life phase. All data were acquired from Belize and plotted per transect, providing a wide range of biomasses.
Mean biomass of parrotfish from Jamaica was derived from Williams and Polunin (2000).
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by more than half from 3.74 to 1.58 g dry mass�m�2�d�1.
The relative importance of urchin grazing (Gur) and fish

grazing (Gpar) can be estimated by assuming that the
higher rate of algal removal included both grazers

whereas the lower rate only comprised fishes:

Gur ¼
PRall

PRpar

� �
Gpar

� �
� Gpar: ð6Þ

If grazing fishes are able to graze 30% of the reef
efficiently (Gpar), then Eq. 6 predicts the grazing

component attributable to urchins as ;40%, where

production for all grazers, PRall ¼ 3.74 and that of
parrotfishes, PRpar¼ 1.58.

Urchin and parrotfish grazing were modeled inde-

pendently in a spatially random manner such that the
consumption of algae overlapped in space. If Diadema

and scarids used to compete for food, the model could,

in principle, have overestimated urchin grazing because
the scaling relationship was based on recent scarid

studies where grazing was not hindered by urchin

competitors (i.e., Gpar may have been 20% instead of
30%). However, it seems more likely that an effective

urchin grazing of 40% of the reef is an underestimate.

First, prior to the mass mortality, densities of urchins at
a depth of 5–10 m on relatively unfished reefs were

usually reported to exceed 1 individual/m2 (Bak and van

Eys 1975, Bauer 1980, Hunte et al. 1986), the exception

being some reefs in Belize, although densities as high as
4 individuals/m2 were reported (Hay 1984). Second,

urchins are very effective grazers even at low densities

(Levitan 1988a). Recent experiments in the Bahamas
have found that Diadema densities of only 1 individual/

m2 can maintain small experimental patch reefs in a

cropped algal state (Craig Dahlgren, personal communi-
cation). Such efficient grazing is not surprising given that

the foraging range of this urchin is approximately 0.5 m2

to 4 m2, is regrazed every 3–6 d, and may be maintained
for more than a year (Carpenter 1984).

Reef scenarios used for simulations

and sensitivity analysis

Unless otherwise specified, scenarios assume that the

total cover of coral is relatively high (30%) at the
beginning of simulations and evenly divided among

brooders and spawners, that macroalgae begin with 20%

cover, that 10% of the reef is set aside as ungrazable
substratum (sand), and the remainder is cropped algae.

Thus, each scenario investigates the impact of grazers,

connectivity, or disturbance on what may be ‘‘healthy’’
reefs offering high-quality habitat. Coral sizes are

selected at random until the required starting cover is

reached (though an alternative strategy is used in the
sensitivity analysis). Marine reserve networks comprise

four reefs connected in a circle of alternate reserves and

nonreserves (Fig. 2). The only direct impact of reserves
is that grazing fishes are fully protected. Since the reefs

have no fixed dimensions, no assumptions are made

about the total area set aside as reserves; rather, I

investigate how coral reefs respond when their level of

grazing, and that of their main source reef, is
manipulated. The core response variables are (1) coral

cover in percentage units which includes both spawners
and brooders, (2) change in total coral cover after 10

years, measured in absolute units of percentage of cover
so that a drop in cover from 30% to 25% would be
recorded as�5%, and (3) survival of recruits, represent-

ing the survival of an entire cohort between the size of
recruitment (0.8 cm2) and reaching puberty (60 cm2).

Sensitivity analyses were carried out using the
percentage of total coral cover after 20 years as a

response variable. Initial runs used standard parameter-
ization (Appendix, Table 2) with 15% cover of both

brooders and spawners, a stock-recruitment relationship
for connectivity and no hurricanes. For both non-

depleted and heavily depleted levels of grazing, each
parameter was adjusted to both its lowest and highest

plausible level (Table 2) and 10 simulations undertaken
for each. Those parameters whose range was either not

applicable or unknown were subjected to a 10% change
on either side of the standard value.

Although densities of Diadema antillarum have in-
creased in a few areas and in shallow water (Edmunds

and Carpenter 2001, Miller et al. 2003), their density
remains low throughout much of the Caribbean, and

particularly so on mid-depth forereefs. Synthesizing
recent reef surveys throughout the region, Kramer

(2003) found that urchins were absent in half of all sites
sampled and themean density was only 0.023 individuals/
m2 (maximum reported anywhere of only 0.2 individuals/

m2). While a return of urchins to premortality levels may
benefit reef resilience, it would be unsafe to assume that

urchins will make a substantial recovery at large scales
and that outbreaks of disease are not repeated. In light of

this, urchins were excluded from most scenarios.

RESULTS

H1: An unfished community of parrotfishes provides

adequate grazing to maintain net reef accretion
(in the absence of acute disturbance events

and Diadema antillarum)

The total cover of living coral always increased when

grazing was carried out by an unexploited community of
parrotfishes (Fig. 6). Brooders exhibited an increase in

cover when their initial abundance was low (2.5% cover)
but the cover of spawners only increased once the total

cover of living coral exceeded approximately 15% (Fig.
6). Recruit survival was positively related to coral cover

and reached an asymptote at the highest covers
simulated (40–50%).

H2: Regional variation in hurricane frequency may impact
the trajectory of Caribbean reefs

In the absence of Diadema antillarum, coral cover

showed a net decline when reefs were disturbed by
hurricanes on a decadal basis (Fig. 7). Halving the

hurricane frequency to 20 years, which is representative
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of parts of Central America, allowed coral cover to

fluctuate around an equilibrial level of approximately

30%. Further reductions in hurricane frequency, to

levels found in South America (e.g., 40–60 years),

permitted rapid reef growth. The dynamics of coral

cover were insensitive to changes in hurricane frequency

once their incidence fell below 40 years (Fig. 7). The

presence of D. antillarum enabled reefs to withstand a

decadal incidence of hurricanes and reduced the

variation among trajectories for different hurricane

frequencies (i.e., trajectories for hurricanes at 10 year

and 40 year intervals became less divergent). Covers of

brooding and spawning corals began at 15% (ratio 1:1)

and typically shifted to a ratio of 5:1 by the end of a 50-

year simulation (range 4.9:1 to 7:1). In other words,

brooders gradually displaced spawners.

H3: Depleting the biomass of parrotfishes (grazing) has a

disproportionately large impact on coral dynamics

(compared to expected variation in other parameters)

The results of a sensitivity analysis, using percentage

of total coral cover after 20 years as the response

variable, are given in Table 2.

Grazing level.—Reducing the efficacy of parrotfish

grazing from 30% to 10% of the reef led to fundamen-

tally different reef communities. Under high grazing,

coral cover increased from an initial level of 30% to

approximately 65%. Conversely, cover decreased to

approximately 7% when grazers were heavily depleted

(Table 2). The divergent response of reefs to grazer

depletion was preserved for all ranges of variables such

that coral cover always increased under high grazing and

always decreased under low grazing.

Parameters used as constants.—Manipulating the

range of individual parameters had a limited impact of

only a few percent cover units on the outcome of

simulations (Table 2). The most sensitive parameter was

whole-colony mortality rate of adult colonies but even

the most severe chronic levels (7% per year) failed to

overturn the general positive trajectory of increasing

coral cover under high grazing (Table 2).

Parameters under experimental control (except graz-

ing).—Well-grazed coral reefs were able to withstand

hurricane frequencies of �20 years (Fig. 7). However,

reducing grazing levels to those associated with over-

fished reefs always resulted in coral decline and less

than 5% cover within 30 years (Fig. 8). The rate of

coral decline was greater under more frequent dis-

turbance but still reached 1% within 40 years of

minimal hurricane frequency (60 years). Changing the

TABLE 2. Sensitivity of model parameters.

Parameter

Parameter value

Standard Minimum Maximum

Standard parameterization

Parameters entered as constants

Growth rate of brooders (cm/yr)� 0.8 0.6 1.0
Growth rate of spawners (cm/yr)� 0.9 0.7 1.1
Retention coefficient 0.25 0.23 0.27
Dispersal coefficient 0.1 0.092 0.108
Initialize population with largest 15% of coral size categories (cm2) 1–2500 1720 2463
Puberty size (cm2)� 60 49 165
Size of full maturation (cm2)� 250 239 355
Macroalgal growth reduction (%) by corals§ 25 22.5 35
Macroalgal overgrowth of coral, k �0.0012 �0.00108 �0.001
Partial-colony mortality rate (adults) jj 0.05 0 0.1
Size of partial-colony mortality event (cm2) } 15 3 60
Whole-colony annual mortality rate (pubescent corals) jj 0.04 0 0.07
Whole-colony annual mortality rate (adult corals)jj 0.02 0 0.07

Parameters under experimental manipulation

Hurricane frequency

Every 60 yr
Every 40 yr
Every 20 yr
Every 10 yr

Four-reef metapopulation, hurricanes every 40 yr

Retention 0.25, dispersal 0.10
Retention 0.10, dispersal 0.25

Notes: The response variable is total coral cover after 20 years of simulations in the absence of hurricanes and where the initial
cover of brooding and spawning corals is 15%. Ten simulations were carried out for both the minimum and maximum parameter
value, and the results were combined and compared to the standard parameterization.

� Sources: Huston (1985), Chornesky and Peters (1987), Van Moorsel (1988).
� Source: Soong (1991).
§ Sources: de Ruyter van Steveninck et al. (1988), Jompa and McCook (2002).
jj Source: Bythell et al. (1993).
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connectivity scenario from a stock–recruitment rela-

tionship to full open recruitment had a limited impact

on trajectories of coral cover (Fig. 8). Similarly,

reversing the importance of retention and dispersal in

a four-reef metapopulation only changed final coral

cover by 3%, whereas depleting grazers changed coral

cover by 55% (Table 2).

In summary, depletion of grazers exerts a fundamen-

tal, overarching impact on the dynamics of Caribbean

forereefs.

FIG. 6. Response of reefs to full scarid grazing as a function of initial starting conditions. A change in cover ofþ4% at an initial
cover of 10% represents an increase in absolute cover from 10% to 14%. Recruit survival relates to a cohort reaching puberty size
(60 cm2) on the 10th year of simulations. Coral recruitment was set to maximum levels regardless of stock size.

TABLE 2. Extended.

High scarid grazing mean (SE) Low scarid grazing mean

Coral cover (%) Absolute disparity (%) Coral cover (%) Absolute disparity (%)

65.8 (0.51) 7.0 (0.71)

64.4 (4.07) 12.5 (0.49) 7.0 (0.22) 0.5 (0.12)
66.9 (0.14) 1.1 (0.14) 6.2 (0.45) 1.3 (0.30)
65.7 (0.18) 0.5 (0.07) 7.3 (0.15) 0.4 (0.12)
65.7 (0.20) 0.4 (0.13) 7.1 (0.18) 0.4 (0.13)
58.3 (0.70) 7.43 (0.70) 9.3 (0.32) 2.2 (0.32)
66.8 (0.51) 1.5 (0.35) 6.9 (0.20) 0.5 (0.11)
65.0 (0.26) 0.9 (0.18) 6.9 (0.22) 0.5 (0.15)
66.0 (0.20) 0.5 (0.13) 7.1 (0.19) 0.5 (0.09)
65.4 (0.31) 0.8 (0.19) 7.3 (0.99) 3.0 (0.23)
65.9 (0.31) 0.8 (0.15) 6.9 (0.15) 0.3 (0.07)
65.0 (0.53) 1.5 (0.32) 6.9 (0.16) 0.4 (0.09)
62.9 (2.49) 7.6 (0.96) 7.1 (0.20) 0.5 (0.13)
42.5 (12.33) 38.0 (7.54) 6.0 (1.81) 5.5 (0.35)

64.5 (3.71) �1.3 (3.71) 5.9 (0.81) �1.4 (0.81)
61.3 (3.82) �4.5 (3.82) 4.2 (0.66) �2.8 (0.66)
35.7 (7.53) �30.1 (7.53) 4.3 (1.00) �2.6 (1.00)
19.9 (5.51) �45.8 (5.51) 1.1 (0.48) �5.9 (0.48)

62.8 (3.9) �2.9 (3.9) 6.4 (0.75) �0.6 (0.75)
59.8 (5.65) �5.9 (5.65) 3.7 (0.20) �3.2 (0.20)
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H4: Depleting the biomass of parrotfishes (grazing) can

precipitate shifts in community state from coral-rich to

macroalgal-dominated ecosystems

The impact of depleting parrotfishes is plotted for a

simple network of four reefs, two of which have full

grazing (30% of reef) and two have partially depleted

grazing (20% of reef) (Fig. 9). Reefs with full grazing

undertook a variety of trajectories, characterised by

clear phases of growth between successive hurricanes. In

contrast, coral cover declined steadily on reefs with

partially depleted grazers, even though hurricanes

occurred at the same frequency (40 years) as on reefs

with full grazing (Fig. 9). Switching from retention-

based systems (Fig. 9a) to dispersal-based systems (Fig.

FIG. 8. Response of overfished reefs to various frequencies of hurricanes and two scenarios of connectivity (maximum vs. stock
recruitment).

FIG. 7. Response of reefs to increasing frequencies of hurricane disturbance. Circles denote high scarid grazing (30% of reef
effectively grazed). Squares denote high scarid grazing and the urchin Diadema antillarum. To convey the scale of variation,
standard errors (n¼ 10) are shown for the 10-yr hurricane trajectory. Coral recruitment was set to maximum levels regardless of
stock size.
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9b) had no clear impact on the dynamics of the system;

mean coral cover fluctuated between a lower limit of 30–

40% and an upper limit of approximately 70%, depend-

ing on the time since disturbance.

Causes and symptoms of coral decline

Examination of temporal shifts in the relative size-

frequency distribution of corals under different disturb-

ance scenarios (Fig. 10) suggested that hurricanes and

the overexploitation of grazers affect coral population

dynamics differently. For a given level of coral cover,

the size distribution of corals rapidly became bimodal

under intense exploitation of grazers (Fig. 10). A

population bottleneck occurred in juvenile size classes

as demonstrated by examining the mean mortality rate

(from 10 simulations) of a cohort of juvenile corals,

passing from recruitment (size 0.8 cm2) to puberty (60

cm2) within 10 years of a healthy reef (30% coral cover)

being simulated. Mortality rates rose from 0.28 in

unfished systems (Fig. 6) to .0.99 in systems where

grazers were heavily depleted.

A more even size distribution emerged where grazer

levels were high but hurricanes occurred frequently (Fig.

10). In this case, juvenile and pubescent colonies

occupied a higher proportion of the population and

the main bottleneck occurred in the number of large

colonies.

Impacts of the severity and frequency of coral mortality

on coral cover

Coral cover tended to decline once the severity of

disturbance (mortality rate) exceeded 50%, even when

events occurred relatively rarely at once per decade (Fig.

11). Not surprisingly, frequent and severe disturbances

led to progressively greater declines in coral cover from

the initial 30%. At the lowest mortality rate simulated

(10%), coral cover could only increase if events occurred

on less than a biannual basis.

DISCUSSION

The dynamics of coral reefs are driven by processes

acting over a wide range of spatial and temporal scales

(Hatcher et al. 1987, Hatcher 1997, Karlson 1999). Such

complexity precludes an experimental approach to

studying the interactions of multiple disturbances such

as the overfishing of grazers and hurricane frequency.

Not surprisingly, much of our understanding of the

impacts of grazer depletion stem from either small-scale

caging studies where the process can be isolated (Lewis

1986, Morrison 1988) or case studies in which the

circumstances of reef degradation have been observed

(e.g., the decline of coral cover in Jamaica [Hughes

1994]). Here, I used a simulation model to integrate

empirical studies across spatial and temporal scales and

investigate the impact of managing grazers in the wider

context of ecosystem dynamics. Outcomes of each

hypothesis and objective could not have been predicted

a priori simply by examining the parameterization.

Tests of hypotheses: the relative importance of

scarid grazing and hurricanes after the die-off

of Diadema antillarum

The empirical data presented here support the

assertion of Williams et al. (2001) that scarids can only

graze a fraction of the forereef surface intensively. Using

a species-specific model of scarid grazing, I suggest that

this fraction ranges from approximately 10% to 30%,

depending on the depletion of scarid biomass. Incorpo-

rating spatially limited grazing into a simulation model

of ecosystem processes illuminated the sensitivity of

Caribbean forereefs to parrotfish exploitation and the

impact of losing the urchin Diadema antillarum.

The impact of heavy exploitation of scarids dwarfed

that of any other model parameter, suggesting that

Caribbean reefs are highly sensitive to fishing of this

functional group. Even intermediate levels of exploita-

tion resulted in a steady decline of coral cover (;0.5%

per year). Simulations suggest that grazer depletion

causes a population bottleneck among juvenile corals

FIG. 9. Dynamics of a four-reef reserve network with
contrasting connectivity scenarios. Larval supply is dominated
by retention features in panel (a), whereas connectivity is
greater in panel (b), which stresses dispersal among adjacent
reefs. Grazers are not depleted in the two reserves (squares, two
upper lines) but are partially depleted (grazing 20% of the reef
per time interval) in nonreserves (circles, two lower lines).
Hurricanes occur at an average interval of 40 yr. Dotted lines
represent SE from 10 simulations.
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such that few reach the adult population. The size-

specific mortality rate of juvenile corals was modeled as

a linear function of macroalgal cover (Appendix). Thus,

any process affecting the cover of macroalgae exerted an

indirect influence on the survival of juvenile corals.

Feedbacks emerged from the model which tended to

drive the system towards either a coral-rich or coral-

poor state. For example, a coral mortality event

increases the colonization space for algae that then

increases the number of possible feeding sites for fish

and reduces the probability that any given patch of reef

will be grazed. Reduced grazing intensity leads to an

increase in macroalgal cover and therefore an increase in

the mortality rate of juvenile corals. Mortality rates of

coral will then continue to increase as coral cover falls

and is replaced by macroalgae, thus reinforcing the

decline. Space limitation compounds this mechanism

because macroalgae prevent the settlement of new corals

(Diaz-Pulido and McCook 2004) and therefore the

overall level of replenishment. The reverse feedback is

also possible in which rising levels of coral cover

concentrate grazing, reduce macroalgal cover, and

reduce the mortality rate of juvenile corals (assuming

that increases in coral cover are not detrimental to

grazer densities).

Through its impact on macroalgal cover, the grazing

intensity of parrotfish will determine whether a reef of

given coral cover experiences positive or negative

feedbacks (or potentially finds an unstable equilibrium,

see Suding et al. [2004]). These emergent properties of

the system arise because parrotfish grazing is spatially-

constrained and unable to prevent a macroalgal bloom

once coral cover falls below some threshold level. Had

grazing not been subjected to spatial constraints then

coral cover, macroalgal cover and the mortality rates of

coral recruits would be less tightly coupled. For

example, a reduction in coral cover might not result in

additional macroalgae if parrotfish communities had a

vast capacity to increase their total grazing in response

to increased food availability (as is the case in urchins

FIG. 10. Comparison of two disturbances on the size–frequency distribution of corals (mean 6 SE, n ¼ 10 simulations).
Depletion of grazers is shown on the left, and intense hurricanes on the right. Total coral cover is identical in each row
(comparison), although the time required to reach such cover differs between disturbances. All systems had maximum coral
recruitment rates independent of stock size. Coral cover was initially 30%.
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[Levitan 1988b]). The mechanisms described here sup-

port the hypothesis than coral reefs can occupy
alternative stable community states (Knowlton 1992,
Hughes 1994), and an analysis of thresholds and

unstable equilibria is forthcoming.
Model simulations with hurricane frequencies of 10-,

20-, and 40-yr intervals were intended to illuminate

differences in the long-term (multidecadal) dynamics of
the northern Caribbean (e.g., the Florida Keys and the
Bahamas), western Caribbean (e.g., Belize, Honduras),

and southern Caribbean (e.g., the Netherlands Antilles),
respectively (Gardner et al. 2005). Where Diadema
remain functionally absent (Kramer 2003), it seems that

hurricane activity will promote regional differences in
the dynamics of coral reefs. Under exclusive grazing of
fishes, the model predicts that coral cover will tend to

decline on forereefs in Florida, fluctuate around an
equilibrium in Belize and increase in the Netherlands
Antilles. However, these ‘‘predictions’’ are best thought

of as large-scale and long-term underlying dynamics
with the following caveats. First, while the model
integrates current understanding of reef ecology, em-

pirical parameterization for the overgrowth of corals by
macroalgae is lacking. Although the model was not
unduly sensitive to this parameter, it may prove

necessary in future to modify its parameterization
beyond that embodied by the sensitivity analyses.
Further empirical data are also required on processes

of coral recruitment including the links between macro-

algal cover, the availability of preferred settlement

substrata (e.g., the coralline Titanoderma prototypum),
and larval supply (Mumby 1999b). Second, the param-
eterization for hurricanes was based on severe (category

5) events including Hurricane Hugo and Hurricane
Mitch (Appendix). A more realistic, though stochastic,
model would vary the intensity of hurricane events in

addition to their incidence. Indeed, the model was not
designed to predict the possible state space of future
coral reefs as this would have required extensive

stochasticity and obscured the more deterministic
dynamics under investigation. Third, the trajectories of
individual reefs are notoriously variable and influenced

by other acute disturbances such as disease and extremes
of temperature (Precht and Miller 2006), neither of
which were modeled.

Generation of hypotheses

The outcomes of model simulations generate three,

potentially testable hypotheses about the impacts of
disturbance on Caribbean forereef communities. All
three hypotheses assume that D. antillarum remain

functionally extinct on the majority of reefs.
Hypothesis 1.—Spatial heterogeneity in coral cover

will initially increase in areas where hurricanes occur

with a decadal frequency (e.g., Florida). Heterogeneity
will then decline as an increasing number of reefs are
impacted by hurricanes but fail to recover. In contrast,

spatial heterogeneity in reefs experiencing infrequent

FIG. 11. The effect of whole-colony mortality rate and the frequency of mortality events on relatively ‘‘healthy’’ reefs. Coral
cover is initially 30%, the grazing of parrotfishes is high (30% of the reef), and the probability of coral recruitment is set to
maximum (1) irrespective of stock size. Absolute change in coral cover is presented after a 10-yr period, where maximum loss is
30%. The black line is an attempt to isolate increasing coral cover (left) from decreasing cover.
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hurricanes (,40-yr incidence) will be comparable to that

before the loss of Diadema. Changes in spatial hetero-

geneity will be greater in more disturbed regions.

Hurricanes cause a heterogeneous seascape with reefs

in various states of recovery (Connell 1978, Aronson

and Precht 1995, Bythell et al. 2000). For a given

disturbance regime, the spatial heterogeneity in coral

cover will depend on the rate of recovery; faster rates of

recovery will reduce the disparity among reefs and

reduce heterogeneity. The model predicts that average

recovery trajectories are slower in the absence of

Diadema. Spatial heterogeneity will initially rise because

the disparity between recently impacted and later

successional reef states will no longer disappear swiftly

through rapid recovery. In time, an increasing propor-

tion of reefs will shift to the disturbed state and either

remain in that state or experience slow rates of change.

At this point, spatial heterogeneity will decline across

the seascape. In contrast, average recovery trajectories

are less severely impacted by the loss of Diadema where

the frequency of hurricane disturbance is low (i.e., in

parts of the southern Caribbean). This is because the

recovery rate of an individual reef is positively related to

its coral cover and infrequent hurricanes are unlikely to

compound one another and heavily suppress coral

cover. While loss of urchins may slow the recovery rate

of individual reefs, the impact is weak when coral cover

is high (note, for example, that scarid grazing permitted

high rates of recruit survival when coral cover exceeded

25%; Fig. 6). In short, loss of the urchin Diadema will

have a relatively weak impact on the spatial hetero-

geneity of coral cover in southern parts of the

Caribbean. Testing this hypothesis will be challenging

and require large-scale sampling of Holocene reefs (e.g.,

Aronson et al. 2004) and surveys of extant communities

in which appropriate covariates, such as recruitment

rates and incidences of acute mortality, are recorded

(i.e., parameters measured by the Atlantic and Gulf

Rapid Reef Assessment program [Kramer 2003]).

Hypothesis 2.—The size-frequency distribution of

corals becomes bimodal when scarids are heavily

exploited, but unimodal with relatively few large

colonies when hurricanes are the chief limiting factor.

Recent surveys of the size–frequency distribution of

corals in the Florida Keys revealed a unimodal

distribution depauperate in large corals (Bak and

Meesters 1999). While these data cannot be considered

representative of hurricane-disturbed reefs, they provide

partial support for the model predictions. Tests of the

predictions concerning scarid depletion require new data

from heavily-fished reefs.

Hypothesis 3.—The net response of reefs to the

intensity and frequency of disturbance follows the

pattern plotted in Fig. 11.

Model predictions were compared to Hughes’ (1994)

20-yr data set of coral cover in Jamaica (Fig. 3). Further

tests and refinements to the model can be carried out as

the results of other long-term monitoring projects, such

as CARICOMP (Ogden et al. 1997), are published.

Specifically, the predicted interaction of disturbance

intensity and frequency (Fig. 11) provide a testable

hypothesis. If the hypothesis is borne out in situ, then it

will provide a basis for forecasting the impact of acute

disturbances such as outbreaks of coral disease. For

example, Croquer et al. (2003) found that an outbreak

of white plague II affected 24% of colonies at their study

sites in Venezuela. It does not necessarily follow that

diseased or bleached colonies will experience whole-

colony mortality (as implicitly modeled here), but if they

did, mortality rates may reach 20–30% per event. At that

level of severity, the model predicts that coral cover

would decline once the frequency of mortality events

exceeds once every five years.

On a related note, the model predicts that the 10-fold

higher recruitment rate of brooding corals will lead to

the displacement of spawning taxa. This outcome is not

surprising, given that spawners’ only competitive ad-

vantage was a higher growth rate (see Nee and May

1992). However, this result raises questions about the

coexistence of brooders and spawners on Caribbean

coral reefs. How have brooders and spawners coexisted

during the Holocene, given a vast disparity in recruit-

ment rates? It seems doubtful that the disparity in

recruitment is a recent phenomenon, because numerous

authors reported similar patterns before diseases de-

pleted the abundance of Acropora spp. and the urchin

Diadema antillarum (e.g., Bak and Engel 1979). Two

possible and complementary mechanisms of coexistence

are (1) the ‘‘storage effect,’’ in which major recruitment

events for spawners occur episodically when conditions

are favorable (Edmunds 2002), and (2) that spawners

have other competitive advantages over brooders.

Brooding species may experience higher mortality rates

during coral bleaching events (McField 1999) but the

selectivity of other types of disturbance require consid-

eration. Do hurricanes preferentially impact brooders?

Are massive brooding colonies less effectively attached

to the substratum than spawners with similar morphol-

ogy? Do corals experience senescence and if so, are

longevities affected by reproductive mode? Model

simulations, together with new empirical research will

help elucidate the plausibility of putative mechanisms

for species coexistence.

Implications for the management of Caribbean reefs

The management of Caribbean parrotfishes is mostly

approached implicitly through no-take marine reserves

(specific policies banning scarid fishing are only known

from Florida and Bermuda). By maintaining high levels

of scarid grazing in reserves, the model implicitly

assumed that the main impact on parrotfish density is

fishing. However, scarid populations are influenced by

primary production (van Rooij et al. 1995a), natural

predation (Mumby et al. 2006), recruitment (Tolimieri et

al. 1998), and rugosity (van Rooij et al. 1996, Mumby

and Wabnitz 2002), which may also mediate predation
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and recruitment success (see Hixon and Carr [1997] for

an example). Predation is unlikely to constrain the

biomass of the largest and most important grazers

because growth rates are fairly high (Choat et al. 2003),

large-bodied predators are scarce on most Caribbean

reefs (Pandolfi et al. 2003), and larger scarids escape the

risk of predation from predators such as grazers

(Mumby et al. 2006). Recruitment rates are likely to

be influenced by both larval supply and postsettlement

mortality (Tolimieri 1998), which are partly determined

by the size of the scarid metapopulation and quality of

the reef habitat, respectively. If exploitation of scarids

outside reserves depletes their biomass and grazing, the

model predicts a dramatic reduction in coral production.

Logically, this will result in declining rugosity as

colonies destroyed by bioerosion and physical distur-

bance are not replaced (see Glynn 1997). By reducing the

quality of habitat in exploited areas, this direct impact of

fishing may reduce the metapopulation size of many

taxa and the degree of spill in and spillover from the

reserve (Sale et al. 2005). Thus, the model assumption

that reserves protect scarid grazing becomes progres-

sively less safe as coral cover declines in non-reserve

areas. More importantly, a speculative yet rational

inference from the model is that failure to manage

scarid populations outside reserves will have a pro-

foundly negative impact on the functioning of the

reserve system and status of nonreserve reefs. Practical

steps for scarid management will almost certainly

involve gear restrictions, particularly on the use of fish

traps which are highly selective for adult parrotfish

(Rakitin and Kramer 1996).

ACKNOWLEDGMENTS

I thank the NERC (NER/A/S/2001/01127), the NSF (OCE-
0119976), the Royal Society, and the U.S. Environmental
Protection Agency (R832223) for funding. The views expressed
here do not reflect those of the funding agencies. Calvin
Dytham, Al Harborne, John Hedley, Fio Micheli, Dan
Brumbaugh, and Steve Swearer provided useful discussions.
Terry Done, Terry Hughes, and Diego Lirman provided helpful
comments on the ecosystem model. Anonymous reviewers
offered constructive advice on an earlier version of manuscript.

LITERATURE CITED

Agardy, M. T. 1994. Advances in marine conservation: the role
of Marine Protected Areas. Trends in Ecology and Evolution
9:267–270.

Aronson, R. B., I. G. Macintyre, C. M. Wapnick, and M. W.
O’Neill. 2004. Phase shifts, alternative states, and the
unprecedented convergence of two reef systems. Ecology
85:1876–1891.

Aronson, R. B., and W. F. Precht. 1995. Landscape patterns of
reef coral diversity: a test of the intermediate disturbance
hypothesis. Journal of Experimental Marine Biology and
Ecology 192:1–14.

Aronson, R. B., and W. F. Precht. 2000. Herbivory and algal
dynamics on the coral reef at Discovery Bay, Jamaica.
Limnology and Oceanography 45:251–255.

Aronson, R. B., and W. F. Precht. 2001. White-band disease
and the changing face of Caribbean coral reefs. Hydro-
biologia 460:25–38.

Bak, R. P. M., and M. S. Engel. 1979. Distribution, abundance
and survival of juvenile hermatypic corals (Scleractinia) and
the importance of life history strategies in the parent coral
community. Marine Biology 54:341–352.

Bak, R. P. M., and E. H. Meesters. 1999. Population structure
as a response of coral communities to global change.
American Zoologist 39:56–65.

Bak, R. P. M., and G. van Eys. 1975. Predation of the sea
urchin Diadema antillarum Philippi on living coral. Oecologia
20:111–115.

Bauer, J. C. 1980. Observations on geographical variations in
population density of the echinoid Diadema antillarum within
the western North Atlantic. Bulletin of Marine Science 30:
509–515.

Beger, M., G. P. Jones, and P. L. Munday. 2003. Conservation
of coral reef biodiversity: a comparison of reserve selection
procedures for corals and fishes. Biological Conservation
111:53–62.

Birkeland, C. 1977. The importance of rate of biomass
accumulation in early successional stages of benthic com-
munities to the survival of coral recruits. Pages 16–21 in
Proceedings of the Third International Coral Reef Sympo-
sium. Rosenstiel School of Marine and Atmospheric Science,
University of Miami, Miami, Florida, USA.

Browman, H. I., and K. I. Stergiou. 2004. Perspectives on
ecosystem-based approaches to the management of marine
resources. Marine Ecology Progress Series 274:269–303.

Bruggemann, J. H. 1995. Parrotfish grazing on coral reefs: a
trophic novelty. Dissertation. Rijksuniversiteit, Groningen,
The Netherlands.

Bruggemann, J. H., J. Begeman, E. M. Bosma, P. Verburg, and
A. M. Breeman. 1994a. Foraging by the stoplight parrotfish
Sparisoma viride. II. Intake and assimilation of food, protein
and energy. Marine Ecology-Progress Series 106:57–71.

Bruggemann, J. H., M. W. M. Kuyper, and A. M. Breeman.
1994b. Comparative analysis of foraging and habitat use by
the sympatric Caribbean parrotfish Scarus vetula and
Sparisoma viride (Scaridae). Marine Ecology-Progress Series
112:51–66.

Bruggemann, J. H., A. M. van Kessel, J. M. van Rooij, and A.
M. Breeman. 1996. Bioerosion and sediment ingestion by the
Caribbean parrotfish Scarus vetula and Sparisoma viride:
implications of fish size, feeding mode and habitat use.
Marine Ecology-Progress Series 134:59–71.

Bruggemann, J. H., M. J. H. van Oppen, and A. M. Breeman.
1994c. Foraging by the stoplight parrotfish Sparisoma viride.
I. Food selection in different socially determined habitats.
Marine Ecology-Progress Series 106:41–55.

Bryant, D., L. Burke, J. McManus, and M. D. Spalding. 1998.
Reefs at risk: a map-based indicator of threats to the worlds
coral reefs. WRI/ICLARM/WCMC/UNEP. World Resour-
ces Institute, Washington, D.C., USA.

Buddemeier, R. W., J. A. Kleypas, and R. B. Aronson. 2004.
Coral reefs and global climate change: potential contribu-
tions of climate change to stresses on coral reef ecosystems.
Pew Center on Global Climate Change, Arlington, Virginia,
USA.

Bythell, J. C., E. H. Gladfelter, and M. Bythell. 1993. Chronic
and catastrophic natural mortality of three common Car-
ibbean reef corals. Coral Reefs 12:143–152.

Bythell, J. C., Z. M. Hillis-Starr, and C. S. Rogers. 2000. Local
variability but landscape stability in coral reef communities
following repeated hurricane impacts. Marine Ecology-
Progress Series 204:93–100.

Caley, M. J., M. H. Carr, M. A. Hixon, T. P. Hughes, G. P.
Jones, and B. A. Menge. 1996. Recruitment and the local
dynamics of open marine populations. Annual Review of
Ecology and Systematics 27:477–500.

Carpenter, R. C. 1981. Grazing by Diadema antillarum
(Philippi) and its effects on the benthic algal community.
Journal of Marine Research 39:749–765.

April 2006 763GRAZER IMPACTS ON CORAL DYNAMICS



Carpenter, R. C. 1984. Predator and population density control
of homing behavior in the Caribbean echinoid Diadema
antillarum. Marine Biology 82:101–108.

Carpenter, R. C. 1985. Sea urchin mass-mortality: effects on
reef algal abundance, species composition, and metabolism
and other coral reef herbivores. Pages 53–59 in C. M. Gabrie
and Harmelin Vivien, editors. Proceedings of the Fifth
International Coral Reef Congress, Tahiti. Volume 4.
Antenne Museum-Ephe, Moorea, French Polynesia.

Carpenter, R. C. 1986. Partitioning herbivory and its effects on
coral reef algal communities. Ecological Monographs 56:
345–363.

Carpenter, R. C. 1988. Mass mortality of a Caribbean sea
urchin: immediate effects on community metabolism and
other herbivores. Proceedings of the National Academy of
Sciences (USA) 85:511–514.

Carr, M. H., T. W. Anderson, and M. A. Hixon. 2002.
Biodiversity, population regulation, and the stability of coral-
reef fish communities. Proceedings of the National Academy
of Sciences (USA) 99:11241–11245.

Cesar, H. S. J., editor. 2000. Collected essays on the economics
of coral reefs. CORDIO, Department for Biology and
Environmental Sciences, Kalmar University, Kalmar, Swe-
den.

Choat, J. H., D. R. Robertson, J. L. Ackerman, and J. M.
Posada. 2003. An age-based demographic analysis of the
Caribbean stoplight parrotfish Sparisoma viride. Marine
Ecology-Progress Series 246:265–277.

Chornesky, E. A., and E. C. Peters. 1987. Sexual reproduction
and colony growth in the scleractinian coral Porites
astreoides. Biological Bulletin 172:161–177.

Connell, J. H. 1978. Diversity in tropical rain forests and coral
reefs. Science 199:1302–1309.

Croquer, A., S. M. Pauls, and A. L. Zubillaga. 2003. White
plague disease outbreak in a coral reef at Los Roques
National Park, Venezuela. Revista De Biologia Tropical 51:
39–45.

Dayton, P. K., E. Sala, M. J. Tegner, and S. F. Thrush. 2000.
Marine protected areas: parks, baselines, and fishery
enhancement. Bulletin of Marine Science 66:617–634.

DeMartini, E. E. 1993. Modeling the potential of fishery
reserves for managing Pacific coral reef fishes. Fishery
Bulletin 91:414–427.

de Ruyter van Steveninck, E. D., and R. P. M. Bak. 1986.
Changes in abundance of coral-reef bottom components
related to mass mortality of the sea urchin Diadema
antillarum. Marine Ecology-Progress Series 34:8794.

de Ruyter van Steveninck, E. D., and A. M. Breeman, 1987.
Deep water populations of Lobophora variegata (Phaeophy-
ceae) on the coral reef of Curaçao: influence of grazing and
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Hunte, W., I. Côté, and T. Tomascik. 1986. On the dynamics of
the mass mortality of Diadema antillarum in Barbados. Coral
Reefs 4:135–139.

Huston, M. 1985. Variation in coral growth rates with depth at
Discovery Bay, Jamaica. Coral Reefs 4:19–25.

Hutchings, P. A. 1986. Biological destruction of coral reefs: a
review. Coral Reefs 4:239–252.

Jompa, J., and L. J. McCook. 2002. Effects of competition and
herbivory on interactions between a hard coral and a brown
alga. Journal of Experimental Marine Biology and Ecology
271:25–39.

Jones, G. P., M. I. McCormick, M. Srinivasan, and J. V. Eagle.
2004. Coral decline threatens fish biodiversity in marine
reserves. Proceedings of the National Academy of Sciences
(USA) 101:8251–8253.

Karlson, R. H. 1999. Dynamics of coral communities. Kluwer
Academic Publishers, Dordrecht, The Netherlands.

Knowlton, N. 1992. Thresholds and multiple stable states in
coral reef community dynamics. American Zoologist 32:674–
682.

Kramer, P. A. 2003. Synthesis of coral reef health indicators for
the western Atlantic: results of the AGRRA program (1997–
2000). Atoll Research Bulletin 496:1–58.

Kramer, P. A., P. R. Kramer, J. E. Arias-Gonzalez, and M.
McField. 2000. Status of coral reefs of northern Central
America: Mexico, Belize, Guatemala, Honduras, Nicaragua
and El Salvador. Pages 287–313 in C. Wilkinson, editor.
Status of coral reefs of the world 2000. Australian Institute of
Marine Science, Townsville, Australia.

Lang, J. C., and E. A. Chornesky. 1990. Competition between
scleractinian reef corals: a review of mechanisms and effects.
Pages 209–252 in Z. Dubinsky, editor. Ecosystems of the
world 25: coral reefs. Elsevier, Amsterdam, The Netherlands.

Langmead, O., and C. Sheppard. 2004. Coral reef community
dynamics and disturbance: a simulation model. Ecological
Modelling 175:271–290.

Lessios, H. A., D. R. Robertson, and J. D. Cubit. 1984. Spread
of Diadema mass mortality through the Caribbean. Science
226:335–337.

Levitan, D. R. 1988a. Algal–urchin biomass responses follow-
ing mass mortality of Diadema antillarum Philippi at Saint
John, U.S. Virgin Islands. Journal of Experimental Marine
Biology and Ecology 119:167–178.

Levitan, D. R. 1988b. Density-dependent size regulation and
negative growth in the sea urchin Diadema antillarum
Philippi. Oecologia 76:627–629.

Lewis, S. M. 1986. The role of herbivorous fishes in the
organization of a Caribbean reef community. Ecological
Monographs 56:183–200.

Luckhurst, B. E., and K. Luckhurst. 1978. Analysis of the
influence of substrate variables on coral reef fish commun-
ities. Marine Biology 49:317–323.

Maguire, L. A., and J. W. Porter. 1977. A spatial model of
growth and competition strategies in coral communities.
Ecological Modelling 3:249–271.

Massel, S. R., and T. J. Done. 1993. Effects of cyclone waves on
massive coral assemblages on the Great Barrier Reef:
meteorology, hydrodynamics and demography. Coral Reefs
12:153–166.

McClanahan, T. R. 1992. Resource utilization, competition,
and predation: a model and example from coral reef grazers.
Ecological Modelling 61:195–215.

McClanahan, T. R. 1995. A coral reef ecosystem–fisheries
model: impacts of fishing intensity and catch selection on reef
structure and processes. Ecological Modelling 80:1–19.

McClanahan, T. R., E. Sala, P. J. Mumby, and S. Jones. 2004.
Phosphorus and nitrogen enrichment do not enhance brown
frondose ‘‘macroalgae.’’ Marine Pollution Bulletin 48:196–
199.

McClanahan, T. R., E. Sala, P. A. Stickels, B. A. Cokos, A. C.
Baker, C. J. Starger, and S. H. Jones, IV. 2003. Interaction
between nutrients and herbivory in controlling algal com-
munities and coral condition on Glover’s Reef, Belize.
Marine Ecology Progress Series 261:135–147.

McCook, L. J., J. Jompa, and G. Diaz-Pulido. 2001. Competi-
tion between corals and algae on coral reefs: a review of
evidence and mechanisms. Coral Reefs 19:400–417.

McCormick, M. I. 1994. Comparison of field methods for
measuring surface topography and their associations with a
tropical reef fish assemblage. Marine Ecology-Progress Series
112:87–96.

McField, M. D. 1999. Coral response during and after mass
bleaching in Belize. Bulletin of Marine Science 64:155–172.

McManus, J. W. 1997. Tropical marine fisheries and the future
of coral reefs: a brief review with emphasis on Southeast
Asia. Coral Reefs 16:S121–S127.

McNeill, S. E. 1994. The selection and design of marine
protected areas: Australia as a case study. Biodiversity and
Conservation 3:586–605.

Meesters, E. H., I. Wesseling, and R. P. M. Bak. 1997. Coral
colony tissue damage in six species of reef-building corals:
partial mortality in relation with depth and surface area.
Journal of Sea Research 37:131–144.

Miller, R. J., A. J. Adams, N. B. Ogden, J. C. Ogden, and J. P.
Ebersole. 2003. Diadema antillarum 17 years after mass
mortality: is recovery beginning on St. Croix? Coral Reefs 22:
181–187.

Moberg, F., and C. Folke. 1999. Ecological goods and services
of coral reef ecosystems. Ecological Economics 29:215–233.

Moran, P. J. 1986. The Acanthaster phenomenon. Ocean-
ography and Marine Biology Annual Review 24:379–480.

Morrison, D. 1988. Comparing fish and urchin grazing in
shallow and deeper coral reef algal communities. Ecology 69:
1367–1382.

Mumby, P. J. 1999a. Bleaching and hurricane disturbances to
populations of coral recruits in Belize. Marine Ecology-
Progress Series 190:27–35.

Mumby, P. J. 1999b. Can Caribbean coral populations be
modelled at metapopulation scales? Marine Ecology-Progress
Series 180:275–288.

Mumby, P. J., et al. 2006. Fishing, trophic cascades, and the
process of grazing on coral reefs. Science 301:98–101.

Mumby, P. J., N. L. Foster, and E. A. Glynn Fahy. 2005. Patch
dynamics of coral reef macroalgae under chronic and acute
disturbance. Coral Reefs 24:681–692.

Mumby, P. J., and C. C. C. Wabnitz. 2002. Spatial patterns of
aggression, territory size, and harem size in five sympatric

April 2006 765GRAZER IMPACTS ON CORAL DYNAMICS



Caribbean parrotfish species. Environmental Biology of
Fishes 63:265–279.

Nee, S., and R. M. May. 1992. Dynamics of metapopulations:
habitat destruction and competitive coexistence. Journal of
Animal Ecology 16:37–40.

Ogden, J. C., R. A. Brown, and N. Salesky. 1973. Grazing by
the echinoid Diadema antillarum Philippi: formation of halos
around West Indian patch reefs. Science 182:715–717.

Ogden, J. C., et al. 1997. Caribbean coastal marine productivity
(CARICOMP): a research and monitoring network of
marine laboratories, parks and reserves. Pages 641–646 in
H. Lessios and I. G. Macintyre, editors. Eighth International
Coral Reef Symposium. Smithsonian Tropical Research
Institute, Panama. Smithsonian Tropical Research Institute,
Balboa, Republic of Panama.

Overholtzer, K. L., and P. J. Motta. 1999. Comparative
resource use by juvenile parrotfishes in the Florida Keys.
Marine Ecology-Progress Series 177:177–187.

Palumbi, S. R. 2001. The ecology of marine protected areas.
Pages 509–530 in M. E. Hay, editor. Marine ecology: the new
synthesis. Sinauer, Sunderland, Massachusetts, USA.

Pandolfi, J. M. et al. 2003. Global trajectories of the long-term
decline of coral reef ecosystems. Science 301:955–958.

Perry, C. T. 1998. Macroborers within coral framework at
Discovery Bay, north Jamaica: species distribution and
abundance, and effects on coral preservation. Coral Reefs
17:277–287.

Polunin, N. V. C., and C. M. Roberts. 1996. Reef fisheries.
Chapman and Hall, London, UK.

Possingham, H., I. Ball, and S. Andelman. 2000. Mathematical
models for identifying representative reserve networks. Pages
291–306 in M. Burgman, editor. Quantitative methods for
conservation biology. Springer-Verlag, New York, New
York, USA.

Precht, W. F., and S. L. Miller. 2006. Ecological shifts along the
Florida reef tract: the past as a key to the future. In R. B.
Aronson, editor. Geological approaches to coral reef
ecology. Springer Verlag, New York, New York, USA.

Rakitin, A., and D. L. Kramer. 1996. Effect of a marine reserve
on the distribution of coral reef fishes in Barbados. Marine
Ecology-Progress Series 131:97–113.

Randall, J. E. 1961. Overgrazing of algae by herbivorous
marine fishes. Ecology 42:812.

Randall, J. E. 1967. Food habitats of reef fishes of the West
Indies. Studies Tropical Oceanography 5:665–847.

Roberts, C. M. 1993. Marine reserves: simple solutions to
managing complex fisheries? Ambio 22:363–368.

Roberts, C. M. 1995. Rapid build-up of fish biomass in a
Caribbean marine reserve. Conservation Biology 9:815–826.

Roberts, C.M., and R. F. G. Ormond. 1987. Habitat complexity
and coral reef fish diversity and abundance on Red Sea
fringing reefs. Marine Ecology-Progress Series 41:1–8.

Rogers, C. S. 1993. Hurricanes and coral reefs: the intermediate
disturbance hypothesis revisited. Coral Reefs 12:127–137.

Rogers, C. S., H. C. Fitz, M. Gilnack, J. Beets, and J. Hardin.
1984. Scleractinian coral recruitment patterns at Salt River
Submarine Canyon, St. Croix, U.S. Virgin Islands. Coral
Reefs 3:69–76.

Russ, G. R. 2002. Yet another review of marine reserves as reef
fishery management tools. Pages 421–443 in P. F. Sale,
editor. Coral reef fishes: dynamics and diversity in a complex
ecosystem. Academic Press, San Diego, California, USA.

Russ, G. R., and L. J. McCook. 1999. Potential effects of a
cyclone on benthic algal production and yield to grazers on
coral reefs across the central Great Barrier Reef. Journal of
Experimental Marine Biology and Ecology 235:237–254.

Sala, E., O. Aburto-Oropeza, G. Paredes, I. Parra, J. C. Barrera,
and P. K. Dayton. 2002. A general model for designing
networks of marine reserves. Science 298:1991–1993.

Sale, P. F., R. K. Cowen, B. S. Danilowicz, G. P. Jones, J. P.
Kritzer, K. C. Lindeman, S. Planes, N. V. C. Polunin, G. R.

Russ, Y. J. Sadovy, and R. S. Steneck. 2005. Critical science
gaps impede use of no-take fishery reserves. Trends in
Ecology and Evolution 20:74–80.

Sammarco, P. W. 1980. Diadema and its relationship to coral
spat mortality: grazing, competition, and biological disturb-
ance. Journal of Experimental Marine Biology and Ecology
45:245–272.

Sammarco, P. W. 1982. Effects of grazing by Diadema
antillarum Philippi (Echinodermata: Echinoidea) on algal
diversity and community structure. Journal of Experimental
Marine Biology and Ecology 65:83–105.

Scoffin, T. P., C. W. Stearn, D. Boucher, P. Frydl, C. M.
Hawkins, I. G. Hunter, and J. K. MacGeachy. 1980. Calcium
carbonate budget of a fringing reef on the west coast of
Barbados. Part II. Erosion, sediments and internal structure.
Bulletin of Marine Science 30:475–508.

Scott, P. J. B., M. J. Risk, and J. D. Carriquiry. 1988. El Nino,
bioerosion and the survival of east Pacific reefs. Pages 517–
520 in J. H. Choat, et al., editors. Proceedings of the Sixth
International Coral Reef Symposium. Australian Institute of
Marine Science, Townsville.

Smith, S. R. 1992. Patterns of coral recruitment and post-
settlement mortality on Bermuda’s reefs: comparisons to
Caribbean and Pacific reefs. American Zoologist 32:663–673.

Soong, K. 1991. Sexual reproductive patterns of shallow-water
reef corals in Panama. Bulletin of Marine Science 49:832–846.

Soong, K. 1993. Colony size as a species character in massive
reef corals. Coral Reefs 12:77–83.

Soong, K. Y., and J. C. Lang. 1992. Reproductive integration
in reef corals. Biological Bulletin 183:418–431.

Steneck, R. S. 1994. Is herbivore loss more damaging to reefs
than hurricanes? Case studies from two Caribbean reef
systems (1978–1988). Pages C32–C37 in R. N. Ginsburg,
editor. Global aspects of coral reefs: health, hazards, and
history. University of Miami, Miami, Florida, USA.

Suding, K. N., K. L. Gross, and G. R. Houseman. 2004.
Alternative states and positive feedbacks in restoration
ecology. Trends in Ecology and Evolution 19:46–53.

Szmant, A. M. 1986. Reproductive ecology of Caribbean reef
corals. Coral Reefs 5:43–53.

Szmant, A. M. 1991. Sexual reproduction by the Caribbean reef
corals Montastrea annularis and M. cavernosa. Marine
Ecology-Progress Series 74:13–25.

Tolimieri, N. 1998. The relationship among microhabitat
characteristics, recruitment and adult abundance in the
stoplight parrotfish, Sparisoma viride, at three spatial scales.
Bulletin of Marine Science 62:253–268.

Tolimieri, N., P. F. Sale, R. S. Nemeth, and K. B. Gestring.
1998. Replenishment of populations of Caribbean reef fishes:
are spatial patterns of recruitment consistent through time?
Journal of Experimental Marine Biology and Ecology 230:
55–71.

Van Moorsel, G. W. N. M. 1988. Early maximum growth of
stony corals (Scleractinia) after settlement on artificial
substrata on a Caribbean reef. Marine Ecology-Progress
Series 50:127–135.

van Rooij, J. M., J. H. Bruggemann, J. J. Videler, and A. M.
Breeman. 1995a. Ontogenic, social, spatial and seasonal
variations in condition of the reef herbivore Sparisoma viride.
Marine Biology 123:269–275.

van Rooij, J. M., J. H. Bruggemann, J. J. Videler, and A. M.
Breeman. 1995b. Plastic growth of the herbivorous reef fish
Sparisoma viride: field evidence for a trade-off between
growth and reproduction. Marine Ecology-Progress Series
122:93–105.

van Rooij, J. M., J. P. Kok, and J. J. Videler. 1996. Local
variability in population structure and density of the
protogynous reef herbivore Sparisoma viride. Environmental
Biology of Fishes 47:65–80.

Van Woesik, R. 2002. Processes regulating coral communities.
Comments on Theoretical Biology 7:201–214.

PETER J. MUMBY766 Ecological Applications
Vol. 16, No. 2



Ward, T. J., M. A. Vanderklift, A. O. Nicholls, and R. A.
Kenchington. 1999. Selecting marine reserves using habitat
and species assemblages as surrogates for biological diversity.
Ecological Applications 9:691–698.

Whittingham, E., J. Campbell, and P. Townsley. 2003. Poverty
and reefs. DFID-IMM-IOC/UNESCO, Paris, France.

Wilkinson, C. R., editor. 2002. Status of coral reefs of the
world: 2002. Australian Institute of Marine Science, Towns-
ville, Australia.

Williams, I. D., and N. V. C. Polunin. 2000. Large-scale

associations between macroalgal cover and grazer biomass

on mid-depth reefs in the Caribbean. Coral Reefs 19:358–

366.

Williams, I. D., N. V. C. Polunin, and V. J. Hendrick. 2001.

Limits to grazing by herbivorous fishes and the impact of low

coral cover on macroalgal abundance on a coral reef in

Belize. Marine Ecology-Progress Series 222:187–196.

APPENDIX

Justification of model parameters (except grazing)

Algal growth and competition with coral.—Reef algae

were divided into cropped algae and macroalgae (Table

1 in main text). Cropped substrata represent encrusting

coralline red algae, fine filamentous algae (which is

usually not visible by eye), and short algal turfs (,5 mm

height). These were grouped into a single category

because coral recruits are associated with all these

classes under the low levels of sedimentation implied

here. For example, of 2223 coral recruits (diameter, 5–20

mm) sampled on natural substrata in Belize (Mumby,

unpublished data), 49% occurred on corallines and 44%

on noncoralline cropped substrata (the remaining 7%

were surrounded by sponges, colonial ascidians, or

macroalgae).

If cropped algae are not grazed, spores of macroalgae

(e.g., Dictyota spp. and Lobophora variegata) develop

and form a canopy that prevents coral settlement. The

recruitment of macroalgae through dispersal of frag-

ments and germlings appears to be highly constrained in

space over short time scales. In Curaçao, de Ruyter van

Steveninck and Breeman (1987) observed very little

colonization of Lobophora in plots located outside the

main Lobophora stand (zero cover after 10 months, 3%

cover after 12 months). Similarly, grazer-exclusion cages

deployed on forereefs in Belize just after Hurricane

Mitch scoured much of the algal canopy developed little

(,10%) additional cover of macroalgae within five

months (Mumby, unpublished data). In contrast, estab-

lished canopies of macroalgae can spread laterally at a

faster rate than their isolated emergence from cropped

algae. When plots (25 3 30 cm) were cleared in a

Lobophora mosaic, they were completely regrown within

six months (one time step of the model), regardless of

season (de Ruyter van Steveninck and Breeman 1987). I

therefore modeled two forms of macroalgal growth.

First, if cropped algae are not grazed for a period of one

year, they become macroalgae. Second, established

macroalgae spread vegetatively such that the probability

that cropped algae in cell X will be overgrown by

macroalgae (PA!M) within six months is given by Eq.

A1 where M4c is the proportion of all macroalgae within

a von Newmann (four-cell) neighborhood of X. Where

local coral cover is high (�50%), coral–algal competition

reduces the rate of macroalgal growth by 25% (based on

de Ruyter van Steveninck et al. 1988, Jompa and

McCook 2002):

C ðproportion of coralÞ¼ ðBCþ SCÞ
2500

ðA1aÞ

PA!M ¼ 0:75 3 M4c if C � 0:5 ðA1bÞ

PA!M ¼ M4c if C , 0:5: ðA1cÞ

Macroalgae such as Lobophora variegata and Dictyota

spp. are able to overgrow coral recruits (Bak and Engel

1979, Sammarco 1980, de Ruyter van Steveninck and

Bak 1986), and small corals of several years in age (R. P.

M. Bak, personal communication). Whether fleshy

macroalgae cause rapid whole-colony mortality of larger

colonies is unclear, although they can cause extensive

partial-colony mortality (Hughes and Tanner 2000),

which may then be followed by whole-colony mortality

arising from further algal overgrowth. Little else is

known about the degree to which algal overgrowth leads

to whole-colony mortality in corals. I therefore had to

quantify this parameter statistically by comparing model

simulations to those of published field data. Since this

was the only parameter fitted in this manner, I generated

model simulations for putative coral–algal overgrowth

relationships and identify those that best fitted the data

of Hughes from Jamaica (Hughes 1994). It follows from

published evidence that the probability of coral mortal-

ity within a six-month period (one iteration) is negatively

associated with increasing coral size. Twenty putative

negative exponential relationships were tested and the

one that minimized the sum of their squared deviations

from each empirical data point was selected (Fig. 3).

The probability that a coral is overgrown (extirpated)

by macroalgae, PC!M, is calculated from Eq. A2 where

x is the area of either BC or SC (Table 1), k is the

exponent, 0.0012 (derived by fitting various exponents

and intercepts to Fig. 3), and M12 is expressed as a

proportion of the area of the cell:

PC!M ¼ Psize 3 M12 ðA2aÞ

PC!M ¼ 0:83 expð�kxÞ: ðA2bÞ

Corals and the connectivity among reefs.—Although it

is becoming increasingly apparent that coral settlement

and early postsettlement mortality is influenced by

specific algal species (Harrington et al. 2004), there are

insufficient data to parameterize these early processes.

Rather, the model uses observed densities of coral

recruits on natural substrata on relatively healthy
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offshore reefs in Belize (Mumby 1999a) that had a high

adult coral cover (;45%) and among the highest

biomasses of grazing fishes reported in the Caribbean

(Fig. 4). Corals recruit in the model at an initial size

(diameter) of 1 cm. The observed density of brooding

species (principally Agaricia spp. and Porites spp.) in the

size range (0.5–1 cm) was 3.98 (;4) per 0.25 m2 of

quadrat placed horizontally on the seabed (n ¼ 559

recruits). These corals would form one six-month cohort

in the model, but the density had to be adjusted to the

mean rugosity (structural complexity) of these reefs at

1.98 (;2). Thus, corals recruit into the model at a

density of 2 individuals/0.25 m2 (or one cell) of cropped

algae. The density of recruits for spawning species was

observed to be at least 10-fold lower than that of

brooders at 0.31 individuals/0.25 m2 of horizontal

quadrat (see also Bak and Engel 1979, Rogers et al.

1984, Hughes 1985, Smith 1992, Mumby 1999a). When

rescaled for model implementation, the density of

spawner recruits was set at one-tenth (approximately

0.07–0.1) that of brooders.

For simplicity, corals were represented as hemispheres

with a linear extension rate (sensu Maguire and Porter

1977). Reviewing published data of skeletal extension

rates for the species Porites astreoides, P. porites,

Siderastrea siderea, Montastraea annularis, Colpophyllia

natans, and Agaricia agaricites (Huston 1985, Chorne-

sky and Peters 1987, Van Moorsel 1988), a median

growth rate was used of 8 mm/yr in brooders and 10

mm/yr in spawners, with a range of 6–11 mm/yr. Both

the onset of maturity and reproductive output of corals

are size dependent (Soong 1993). Puberty sizes and

fecundities in Caribbean corals are well established

(Szmant 1991, Soong and Lang 1992, Soong 1993).

However, before the implementation of reproduction is

described, it should be borne in mind that the processes

between reproduction and subsequent settlement of new

corals are almost entirely unknown (Mumby 1999b).

Modeling these processes required a necessarily con-

trived framework of larval connectivity.

The efflux of larvae from a reef was quantified from

the size-frequency distribution of both brooders (based

on the species Porites astreoides) and spawners (based

on the species, Siderastrea siderea). Both species reach

puberty at a cross-sectional area of around 60 cm2 and

full maturity at around 250 cm2 (Soong 1993). The

fecundity of pubescent corals is approximately 25% that

of fully mature colonies. These were then set as size-

based parameters for puberty, maturation, and relative

fecundity. The second stage, which is contrived, involves

scaling total reproductive output to recruitment rates

throughout the metacommunity. An arbitrary common

currency of larvae was based on the fecundity of Porites

astreoides, which has approximately two eggs per

gonad, six gonads per polyp, and 18 polyps per cm2

of coral (Szmant 1986). A linear stock–recruitment

relationship was then established by assuming that the

coral recruitment rates described earlier would only

occur if the adult stock was relatively high and if larval

supply was optimal. High adult stock was determined

arbitrarily as a reef with at least 30% total coral cover

(which is relatively healthy in the Caribbean; see

Ginsburg 1994, Kramer 2003), comprising an even mix

of species (15% cover each), a random allocation of

coral sizes and random distribution over the reef. The

mean total larval output of such a reef was simulated

100 times, varying the spatial configuration and size

composition of corals. A proportion of larvae are

retained by the reef (arbitrarily 5–25%) and a propor-

tion dispersed to the nearest reef downstream (arbitra-

rily 2–10%). The remaining larvae are lost (Fig. 2).

These values allow fivefold differences to be simulated

in larval retention or dispersal. To create a linear stock–

recruitment relationship under the assumption of

optimal larval supply, I calculated critical values of

total larval input (Tl ) for various stock sizes (30–3%

total coral cover, C) at maximum rates of larval

retention and dispersal. The probability of coral recruit-

ment to cropped algae, Pr, was then fitted linearly to

these critical values so that

Pr ¼ 1 where C � 30% ðT1 ’ 2:9 3 109Þ
Pr ¼ 0 where C � 3% ðT1 ’ 2:9 3 107Þ
0 , Pr , 1 where 3% , C , 30%:

Two alternative larval connectivity scenarios were

included in the model. Stock size and recruitment could

be decoupled by enforcing Pr¼ 1 irrespective of C, and

recruitment could be stochastic by selecting Pr at

random.

Coral–coral competition.—Coral–coral interactions

often form intransitive networks in which competitive

dominance reverses between species (Lang and Chorne-

sky 1990). The importance of coral–coral interactions in

structuring reef communities has been questioned (Van

Woesik 2002), particularly on Caribbean reefs which

often have lower coral cover than their Indo-Pacific

counterparts. For example, Hughes and Jackson (1985)

noted that coral–coral interactions accounted for less

than 10% of all coral mortality events observed in

Jamaica. Since their observations were made between

1977 and 1980, whilemacroalgae were relatively scarce on

Jamaican reefs, it seems likely that coral–coral interac-

tions are even less common today. However, simple

competitive interactions were imposed if corals reached

the maximum implied size of a cell (2500 cm2). The larger

coral would overtop smaller corals (chosen at random if

.1 or if both corals had equal size). Corals were able to

overgrow cropped algae (Birkeland 1977, McCook et al.

2001) and displace macroalgae (although the latter algae

could overgrow and extirpate coral). The model tracked

individual corals and reported the size–frequency distri-

bution and cover of both reproductive modes.

Disturbance (other than overgrowth of small corals by

macroalgae).—Bythell et al. (1993) studied the mortality

of corals in St. Croix for a 26-month period during which

PETER J. MUMBY768 Ecological Applications
Vol. 16, No. 2



reefs were disturbed byHurricaneHugo, the largest storm

to affect the site for 60 years. Deriving data for a six-

month period (one time step in the discrete-time model)

with no hurricane, the proportion of adult colonies

experiencing partial-colony mortality lay between ap-

proximately 0% and3% forDiploria strigosa, 1.5% and9%

for Porites astreoides, and 3% and 10% for Montastraea

annularis. An intermediate incidence of partial-colony

mortality of 5% was applied to mature colonies in each

time interval. Under these levels of chronic disturbance,

individual partial-colony mortality events cause a reduc-

tion in colony size of 15 cm2 cross-sectional area, which is

the median value observed on M. annularis prior to

Hurricane Mitch (Mumby, unpublished data).

The data of Bythell et al. (1993) were also used to

estimate chronic whole-colony mortality rates (i.e.,

events caused by toppling, wave surge, and occasional

diseases). For pubescent colonies, I used the mean

chronic whole-colony mortality rate of P. astreoides

colonies in the size range 50–200 cm2, rescaled to six

months (approximately 2%). Chronic whole-colony

mortality rates were reduced in larger, mature colonies

to 1% (;2% per annum) based on an observed

frequency of 1.5% for P. astreoides (Bythell et al. 1993).

Hurricanes are an integral part of coral reef dynamics

(Edmunds and Witman 1991, Rogers 1993, Bythell et al.

2000). Under partially sheltered conditions, such as

those in which Montastraea reefs occur (Geister 1977),

the probability of whole-colony mortality is a parabolic

function of colony size (Massel and Done 1993). The

maximum whole-colony mortality rate for intermediate-

sized corals was set at 50%, following the observed

impact of Hurricane Hugo on Porites astreoides on a

heavily impacted forereef in St. Croix (77% reduction in

tissue surface area of which ;75% was attributable to

whole-colony mortality [Bythell et al. 1993]). A minimal

whole-colony rate of 5% for larger colonies (.2000 cm2)

was estimated as half the reported overall mortality rate

of P. astreoides colonies in the size class .200 cm2 and

assuming that mortality rate continued to decline with

increasing size. The overall parabolic relationship of the

probability of whole colony mortality, Phur, was

calculated from Eq. 3 where x is either BC or SC (the

cross-sectional basal area of a coral colony):

Phur ¼ �0:0000003x2 þ 0:0007x þ 0:05: ðA3Þ

Coral recruits suffer intense scouring and dislodge-

ment during hurricanes and a mortality rate of 80% was

recorded for coral recruits (2–20 mm diameter) after

Hurricane Mitch, which struck Belize in 1998 (Mumby

1999a).

Hurricane-induced incidences of partial-colony mor-

tality were derived from the impact of Hurricane Mitch

on mature colonies of Montastraea annularis in Belize

(Mumby, unpublished data). At least 90% of entire

colonies experienced partial-colony mortality after the

hurricane (n ¼ 90). The mean reduction in living coral

tissue, measured six months (one time step) after the

hurricane was 46% of the colony (SD ¼ 33%, n ¼ 13) at

one site and 50% of the colony (SD ¼ 23%, n ¼ 17) at a

second site, separated by a distance of 3 km. Given that

Mitch was a category 5 storm and that many hurricanes

are less intense, the lower value was used in the model.

Hurricanes remove up to 90% of macroalgae from the

reef (Mumby, unpublished data, after Hurricane Mitch).

The frequency of hurricanes varies with latitude and

longitude throughout the Caribbean and individual

storm tracks are archived from the year 1851 (data

available online).2 The most frequently disturbed areas,

such as the Florida Keys, experience events with an

average incidence of approximately 10 years (Gardner et

al. 2005). The average frequency of disturbance drops to

around 20 years in Mesoamerica (western Caribbean)

and 40–50 years in parts of the southern Caribbean such

as the Netherlands Antilles. Hurricanes were simulated

on a probabilistic basis such that their incidence on a

single reef was unpredictable over ecological time.

Rugosity.—The dynamics of reef rugosity are not

modeled explicitly, largely because the net impact of

bioerosion cannot easily be generalized (C. Schoenberg,

K. Holmes, and C. Perry, personal communication).

However, it is reasonable to assume that sustained low

levels of coral cover, particularly those resulting from

recruitment failure (see Results), will lead to declining

habitat rugosity because corals lost during storms are

unlikely to be replaced. Indeed, decreases in habitat

rugosity have been observed on scales of years when

coral cover remains low (Moran 1986, Scott et al. 1988,

Glynn 1997; T. P. Hughes, personal communication). I

concede that the precise rate of rugosity decline will

depend on local levels of physical disturbance and

bioerosion, which show considerable variation among

reefs (Perry 1998). Given these limitations, I only

speculate upon the impact of declining rugosity when

the model predicts sustained low levels of coral cover

and little coral replenishment.

2hhttp://hurricane.csc.noaa.govi
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