

Evidence that land use interventions including Agroforestry can deliver quantifiable environmental services – case studies from Kenya and Asia

> John K. Mwangi John M. Gathenya PES Training Workshop 8th - 9th August, 2011

Flow at watershed outlet is determined by several factors

Land cover/vegetation
Land management
Soils and Geology
Rainfall

Climate / Weather
Topography
Drainage pattern
Watershed shape

Quantifying watershed services

Application of hydrologic models

Conventional indicators: SWAT

Water yield, water quality

Others: GenRiver Flow buffering indicators, water yield

FlowPer

Flow persistence

Determining watershed indicators

Definitions

- Buffering capacity of a watershed is its ability to reduce variations in streamflow relative to rainfall
 - Can be used to study the relationship between land use and flows.
- Flow persistence is the fraction of flow on the previous day that can be expected as minimum volume of flow on a given day

Can f_p be used to indicate watershed quality?

What influences watershed services?

Non structural (Vegetative) : Use vegetation to control erosion. Examples:

Grass strips, hedge barriers, contour farming and agroforesty systems.

Structural:

Design and construction of erosion control structures.

Examples:

Terraces, waterways, grade stabilization structures and cut off drains

Case study: 1 Kapingazi

KAPINGAZI CATCHMENT

Impacts of land use change -Kapingazi

Scenario	Water yield (mm)	Surface runoff (%)	Base flow (%)
Base case	846	86	14
Conversion of tea farms to annual crops	936+(10%)	84	16
Conversion of coffee farms to annual crops	864 +(2%)	88	12
Doubling of built up areas	860 +(1.6)	86	14

Impact of land use change on water yield is generally low.

Case study 2: Mara River basin

Amala and Nyangores

Satellite image analysis showed forest in MRB has declined by almost 60% over the 25 years between 1975 and 1999

Mara river basin

Using Genriver, two scenarios were tested in Amala and Nyangores: 1. Base case 2. Complete forest cover

Result: Restoring forest cover may not necessarily increase water yield

Case study: 3 Kejie watershed

Dramatic change in land cover has occurred in the last 40 years

Land use change and water balance

Watershed scenarios

Land cover: forest⁺, grassland⁺, crop⁺, urban⁺

Figure 5. Relative change in average annual overland flow, groundwater release, actual ET, and streamflow as a result of land-cover changes over the period from 1961 to 1990 in the Kejie watershed

Case study: 4 Sasumua Catchment

World Agroforestry Centre

Area = 107 km2, 50% under agriculture Population = 17,500 growing at 3.5%Households ca = 3,700Average farm size = 2.5 acres

What are the problems?

Clogging of intakes Lowered water quality

Dried up streams and rivers

Increased water treatment cost Frequent de-silting of intakes

Reduced dry weather flow

Effect on water balance components

	Intervention	Surface runoff (mm)	Lateral flow (mm)	Base flow (mm)	Water yield (mm)
	Base Simulation	197	188	284	667
	10mVFS + GWW	No effect	No effect	No effect	No effect
	GWW only	No effect	No effect	No effect	No effect
	Contour farming	174 –(1 <mark>2%)</mark>	190	302 +(<mark>6%</mark>)	664
	Terracing	157 –(<mark>20%</mark>)	191	316 +(<mark>11%</mark>)	663
	Contour farming + GWW	185	189	293	665
	Terracing + GWW	182 –(<mark>8%</mark>)	189	295 +(<mark>4%</mark>)	665

Quality: Surface runoff reduction significant Regulated flow: base flow increase is significant Quantity : Impact on water yield is insignificant

Princreasing impact: Targeting hotspots

Sediment sources in Sasumua

- Low erosion rates from the forest
- High rates in cultivated areas, exceeding 11.2 tons/ha per year
- A-Steep cultivated areas
- B– Flat Planosols area

Highest sediment yield comes from area B.

- Grassed waterway ideal in B
- Filter strips/terraces ideal in A

Required in Sasumua - flow regulation and improved water quality.

PY	Sediment yield reductions at reservoir inlet (tons/year)						
	Order	Intervention	% sediment removal				
	1	30m wide filter strips and grassed waterway	80				
	2	75					
	3	73					
	4	66					
	5	54					

- Clarify cause effect relationships
- Identify critical source areas
- Identifying appropriate land uses
- Quantifying the ES being provided
- Predict impact of interventions before / After implementation
- Monitoring impact of interventions

Monitoring impact of PES

- Establish base line conditions
- Monitor environmental impacts water quantity and quality
- ✓Monitor impact of payments on the community
- ✓Gender analysis of HH benefits
- Monitoring at community level

Water quality analysisSediment analysis

Measurement of river flowSediment sampling

ACTIONS

- Targeting of individual farmers to control water pollution
- Focus on hot spots to get maximum value for investment

OPTIONS

- Regulatory approach- get land owners to incur expenses in conservation practices – has not worked well in the past.
- Rewarding land owners to invest more in conservation

Building a business case for PES -Sasumua

Grassed waterway (3m wide by 20 km long – approx. 6 Ha) 20% less sediment yield into Sasumua dam

Institutional and regulatory framework

Case for PES in Sasumua

Potential 'hot spots' identified

Watershed services

- Regulated flow
- Improved water quality
- Identified the requisite land use practices
- Potential sellers of these watershed
- Potential buyers basically NWC
 WTA study of sellers of ES
- Engaged sellers
- Attempting to engage buyers

Challenges:

Multiple sellers available Lack of multiple buyers

✓ Increase base flow
 ✓ improve water quality
 ✓ Marginal improvement in water quantity

Role of forests and Agroforestry systems:

✓ Improve amount of water in the soil
✓ retards surface runoff and reduces soil erosion
✓ Increase base flow and regulate flow.

Water quality improvement impacts are more "tangible"

Acknowledgement

This research is being implemented by PRESA, a research project of World Agroforestry Centre (ICRAF)

Web site http://presa.worldagroforestry.org.

