A machine vision system for automated field–level wood identification

J. Hermanson¹ A. Wiedenhoeft¹ S. Gardner²

¹U.S. Forest Service Forest Products Laboratory

²U.S. Forest Service International Programs

What is forensic wood science, and how does it work?

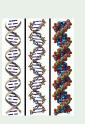
- Scientific basis for determining
 - Species identification
 - Provenance
- Scientific techniques vary in strength, cost, and timeliness
 - Morphological methods
 - Traditional anatomical identification
 - Machine-vision
 - Molecular methods
 - Analytical chemistry
 - DNA identification

Traditional anatomical identification

- Field deployable
- Not species-specific usually only the genus
- Not always genus-specific sometimes only a group
- Rarely provides provenance

Chemical methods

- Chemical fingerprinting
 - Identify species-specific chemicals in wood
 - Laboratory analysis
- NIR spectroscopy
 - Identifies chemical patterns. Ongoing research to establish robustness
 - Field-deployable
- Isotopes
 - Identifies provenance based on chemical differences between locations
 - Laboratory analysis



DNA methods

- 'Fingerprinting' Individual specificity
- 'Barcoding' –
 Species
 identification
- Phylogeography Provenance
- Not (yet) field-deployable

Overview

Taxonomic identification table Chemo-Context Wood/Product Anatomy DNA metrics Reference-Heartwood Yes Maybe Yes database Yes Yes Nο Sapwood Non-wood Nο Yes Nο Field-Heartwood Yes Maybe Yes application Sapwood Yes Yes No* Yes* Plywood Yes Probably OSB/Flakeboard Yes Possibly Yes* Yes* Particleboard Yes Probably not Fiberboards Yes* No* Maybe Yes* No* Maybe Paper Pulp Yes* No* Maybe Wood-Plastic Composites Yes* No* Maybe

Overview

Chemo-Context Wood/Product Anatomy DNA metrics Reference Heartwood No* Maybe Yes database No* Nο Sapwood Yes Non-wood No* Yes Nο Field Heartwood No* Maybe Yes No* application Sapwood No* Yes

40149147177

Yes*

Yes* Yes*

Maybe

Maybe

Maybe

Maybe

Probably

Possibly

Probably not

No*

No*

No*

No*

Plywood

OSB/Flakeboard

Particleboard

Fiberboards

Paper Pulp

Wood-Plastic Composites

Provenance identification table

No*

No*

No*

No*

No*

No*

No*

The Problem

Botanical identification of wood and wood products is a limiting factor for enforcing laws that combat illegal logging

- Traditional anatomical identification is limited
 - Time to train
 - Cost of training
 - Mobility of individuals
 - Lacks species and provenance
- Need a technological rather than a human solution
 - Chemical and DNA are not ready for widespread field deployment

The Project

Build a machine vision system that can be used as a field-deployable tool to identify woody taxa.¹

¹The Fine Print: with an accuracy equal to or better than average field personnel with one week of training

The Approach

Pros and cons of a machine vision system for wood ID

Pros

- Digital imaging can be more sensitive than the human eye
- Machine vision systems collect copious amounts of data
- The collected data can be "mined" to enhance the knowledge of wood anatomical structure

Pros continued

 Machines do not forget, get bored, promoted, fired, etc

Cons

- Machines are dumb
 - Garbage in garbage out
 - Requires robust programing
 - Needs Big Data

The Operational Philosophy

Develop an open system

- Utilize low cost off-the-shelf hardware
- Utilize open source software
- Have a central database
- Create an open platform for others to further development
- High-throughput
- Repeatable
- Easy-to-use
- Economical

We use this system to capture digital images of unknown wood specimens

Demonstration

Take-home message

This is a field-deployable machine vision system that, as of right now, is as accurate as a person with one week of wood identification training

Details

Classification	First	Second	Third	Sum
Genus and species	42%	18%	9%	69%
Genus	60%	21%	8%	89%

Cooperators

- Dr. Yafang Yin, Chinese Academy of Forestry, Beijing, China
- Dr. Flavio Ruffinatto, Turin, Italy
- Dr. Gerald Koch, Thunen Institute Centre of Competence on the Origin of Timber, Hamburg, Germany
- Dr. Peter Gasson, Royal Botanic Gardens Kew, London, England
- Dr. Sandra Florsheim, Secao de Anatomia de Madeira, Instituto Florestal, Sao Paulo, Brazil
- Dr. Hisashi Abe, Forestry and Forest Products Research Institute, Tsukuba, Japan

Acknowledgements

- US Department of State
- US Forest Service International Programs
- US Forest Service Forest Products Laboratory

LATEX with the BEAMER class

Questions

Nothing in Nature is random. ... A thing appears random only through the incompleteness of our knowledge.

Baruch Spinoza