State of Green Infrastructure
Investment in the Water Sector

Gena Gammie, Forest Trends Water Initiative
Katoomba Marketplace Latin America
Lima, Peru
October 11, 2016
By 2030:

- **6.1**: universal access to **safe & affordable drinking water for all**
- **6.2**: adequate & equitable sanitation & hygiene for all
- **6.3**: reducing pollution, wise reuse-recycling
- **6.4**: increase water use efficiency, sustainable withdrawals, **reduce number people suffering water scarcity**
- **6.5**: implement IWRM at all levels
- **6.6**: protect & restore water-related ecosystems, mountains, forests, wetlands, rivers, aquifers....
Climate change makes water resources management even more important

Oferta y demanda de agua para la cuenca del Río Rimac.
By maintaining and enhancing ecosystem services, green infrastructure helps to optimize water resources management.
Green Infrastructure for Water

Natural or nature-based systems that perform the same functions as built or gray infrastructure:
regulating supply, storage, filtration & treatment. Can be an alternative or complement to gray infrastructure.

Protected Ecosystem / Managed Ecosystem

Forests, Wetlands, Grasslands, Rivers, Lakes

Restored / Managed Ecosystem

Reforestation; River, Floodplain, Wetland Restoration; Sustainable Forestry or Agroforestry; Ecological Agriculture; Silvopastoral Systems; Sustainable Aquaculture

Created System / Green Engineering

Constructed Wetlands (water treatment); Green Roofs, Green Streets; Bio-engineered Shoreline Protection

Built or Gray Infrastructure

Water Treatment Plants, Storage Reservoirs, Desalination Plants, Wastewater Treatment Plants, Urban Drainage Systems, Flood Barriers
The benefits of green infrastructure

Table 2: Overview of CI solutions relevant for water resources management

Solutions marked with ‘*’ consist of built (‘grey’) elements that interact with natural features and seek to enhance their water-related ecosystem services.

<table>
<thead>
<tr>
<th>Water management issue (Primary service to be provided)</th>
<th>Green Infrastructure solution</th>
<th>Location</th>
<th>Corresponding Grey Infrastructure solution (at the primary service level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water supply regulation (incl. drought mitigation)</td>
<td>Re/afforestation and forest conservation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reconnecting rivers to floodplains</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wetlands restoration/conservation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Constructing wetlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water harvesting*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Green spaces (bioretention and infiltration)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Permeable pavements*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water purification</td>
<td>Re/afforestation and forest conservation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riparian buffers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reconnecting rivers to floodplains</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wetlands restoration/conservation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Constructing wetlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Green spaces (bioretention and infiltration)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Permeable pavements*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erosion control</td>
<td>Re/afforestation and forest conservation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riparian buffers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reconnecting rivers to floodplains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological control</td>
<td>Re/afforestation and forest conservation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riparian buffers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reconnecting rivers to floodplains</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wetlands restoration/conservation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Constructing wetlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water temperature control</td>
<td>Re/afforestation and forest conservation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riparian buffers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reconnecting rivers to floodplains</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wetlands restoration/conservation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Constructing wetlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Green spaces (shading of water ways)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The benefits of green infrastructure

Table 2 Overview of GI solutions relevant for water resources management. Solutions marked with ‘*’ consist of built (‘grey’) elements that interact with natural features and seek to enhance their water-related ecosystem services.

<table>
<thead>
<tr>
<th>Water management issue (Primary service to be provided)</th>
<th>Green Infrastructure solution</th>
<th>Location</th>
<th>Corresponding Grey Infrastructure solution (at the primary service level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riverine flood control</td>
<td>Re/afforestation and forest conservation</td>
<td>Urban</td>
<td>Dams and levees</td>
</tr>
<tr>
<td></td>
<td>Riparian buffers</td>
<td>Coastal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reconnecting rivers to floodplains</td>
<td>Urban</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wetlands restoration/conervation</td>
<td>Coastal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Constructing wetlands</td>
<td>Coastal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Establishing flood bypasses</td>
<td>Coastal</td>
<td></td>
</tr>
<tr>
<td>Moderation of extreme events (floods)</td>
<td>Green roofs</td>
<td>Urban</td>
<td>Urban stormwater infrastructure</td>
</tr>
<tr>
<td>Urban stormwater runoff</td>
<td>Green spaces (bioretention and infiltration)</td>
<td>Urban</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water harvesting*</td>
<td>Urban</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Permeable pavements*</td>
<td>Coastal</td>
<td></td>
</tr>
<tr>
<td>Coastal flood (storm) control</td>
<td>Protecting/restoring mangroves, coastal marshes and dunes</td>
<td>Coastal</td>
<td>Sea walls</td>
</tr>
<tr>
<td></td>
<td>Protecting/restoring reefs (coral/oyster)</td>
<td>Coastal</td>
<td></td>
</tr>
</tbody>
</table>

Green Infrastructure Benefits

Water Sector:
• Avoided capital costs
• Reduced operating costs (e.g., raw water quality)
• ‘No regrets’ strategies
• More resilient water systems (e.g., reduced flood risks to WTPs)
• More reliable, sustainable supplies (dry season flows, groundwater recharge)

Other Sectors:
✓ Reduced flood damages (roads, bridges, energy facilities)
✓ Cleaner air (healthier air)
✓ GHG reductions, climate adaptation
✓ Cleaner water (health water borne diseases)
✓ Improved agricultural productivity
✓ Rural livelihoods
✓ Economic opportunities (eco-tourism, certified agricultural products)
Our ability to quantify the benefits of green infrastructure is improving significantly.

Figure: Cost-effectiveness of green and gray strategies for closing the water supply gap for Lima, Peru

Potential Scale: Cost Savings

Estimated avoided costs (WTP O&M) of healthy watersheds for urban utilities **About $108 billion***

2% of current gray infrastructure spending: **About $135B – 270B in avoided costs**

Current spending on green infrastructure for water: **About $24B**

*McDonald et al. 2016; ** McDonald and Schemie 2014, White et al. 2010*
Number People Benefitting: Water Quality Improvements

- Forest Fuel Reduction: **100 million**
- Reforestation: **110 million**
- Riparian Restoration: **140 million**
- Forest Protection: **475 million**
- Agricultural BMPs: **600 million**

Green infrastructure interventions in 100 largest cities – 10% sediment reduction (McDonald and Schemie 2014)
El subsidio público ha dominado el valor invertido, pero los otros modelos representan más de 75% del número de programas.

Figura 4: Comparación entre Tipos de Programas por Valor y Prevalencia, 2013
(Valor: $ Transados en 2013, y Prevalencia: # de Programas Activos/Piloto)

*Nota: 'Compensaciones Voluntarias' se refiere a pagos hechos por compañías para actividades que compensen simbólicamente sus impactos - como el volumen de agua usado.

Los usuarios del agua están entrando cada vez más al entender sus riesgos hidricos.
Los usuarios del agua están entrando cada vez más al entender sus riesgos hidricos
Tendencias en los mecanismos financieros para los servicios ecosistémicos

- Liderazgo y participación de beneficiarios locales; mayor participación de empresas (públicas y privadas)
- Más énfasis en el desempeño hidrológico en el diseño, priorización y evaluación de proyectos/inversiones
- Inversiones más conectados con procesos participativos de planificación de cuencas

Modelo subsidiario

Modelo basado en desempeño
Insumos necesarios y desafíos para el nuevo modelo basado en desempeño y impulso local

Figura 10: Top Cinco Desafíos Reportados por Desarrolladores de los Programas

1. Falta de compradores: Calificación: 125
2. Gestión de fondos: Calificación: 103
3. Aumento de capital inicial: Calificación: 95
4. Barreras legales/regulatorias a los fondos de protección de cuencas: Calificación: 94
5. Falta de apoyo de los responsables políticos: Calificación: 79

Nota: Los datos sobre los desafíos de los programas fueron calculados en base al número de programas que reportaron el desafío, multiplicado por el ranking (1-5) asignado por los encuestados. Para este grupo de encuestados, teóricamente el mayor puntaje posible fue 415.

Upfront financing needed for green infrastructure projects – matching supply to demand

- Information for Strategic Design & Adaptive Management
 - Science / local knowledge for planning interventions
 - Linking interventions to outcomes
 - Evaluating social-environmental impacts

- Green Infrastructure Planning & Design
 - Stakeholder Engagement
 - Landscape Level Planning
 - Technical Design of Interventions
 - Socio-economic Impact Analyses

- Materials / Resources to Build Projects
 - Seeds, saplings, nurseries
 - Earth moving equipment
 - Monitoring equipment
 - Labor

- Capacity to Build Pipelines of Investable Projects
 - Human Capacity: design, implementation
 - Institutional Capacity: water sector, finance, government
 - Financial Capacity (creating financial architecture or ecosystem)
Barriers to Attracting Financial Investments

Lack of ‘investable’ projects:
- Small scale, diversity of project types, many individual ‘projects’
- Range of complexity
- Poor understanding of risk/return
 - Uncertainties around performance
 - Time lags to performance
- Uncertain / volatile future revenues
- **Utilities do not own green assets**
- Time to pay-back/ROI
Key Questions for Green Infrastructure Investments – Water Sector

• Moving from small, one-off projects to project pipelines (‘green infrastructure factories’) at scale
• Diversifying and de-risking revenue streams from green infrastructure
• Financial institutions or consortia that specialize in green infrastructure finance (GI Financing Facilities)
• Developing the human and institutional capacity in the water sector to scale green infrastructure
¡GRACIAS!

ggammie@forest-trends.org
@ggammie
Forest-trends.org
EcosystemMarketplace.com
Can ‘green’ investments address the water infrastructure funding gap?

Current built or ‘gray’ infrastructure spending
- About $500 billion (OECD)

Additional investment needed in water & sanitation to meet SDG6 by 2030:
- >$1.7 trillion (World Bank)

Natural or ‘green’ infrastructure for water in 2015:
- About $20+ billion; 11+% growth rate past 10 years (Forest Trends)